Summary: | Additive manufacturing processes, such as coreless filament winding with fiber composites or laser powder bed fusion with metals, can produce lightweight structures while exhibiting process-specific characteristics. Those features must be accounted for to successfully combine multiple processes and materials. This hybrid approach can merge the different benefits to realize mass savings in load-bearing structures with high mass-specific stiffnesses, strict geometrical tolerances, and machinability. In this study, a digital tool for coreless filament winding was developed to support all project phases by natively capturing the process-specific characteristics. As a demonstration, an aluminum base plate was stiffened by a coreless wound fiber-composite structure, which was attached by additively manufactured metallic winding pins. The geometrical deviations and surface roughness of the pins were investigated to describe the interface. The concept of multi-stage winding was introduced to reduce fiber–fiber interaction. The demonstration example exhibited an increase in mass-specific component stiffness by a factor of 2.5 with only 1/5 of the mass of a state-of-the-art reference. The hybrid design approach holds great potential to increase performance if process-specific features, interfaces, material interaction, and processes interdependencies are aligned during the digitized design phase.
|