ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate Layer
To study the shear deformation and failure characteristics of a wellbore and the interaction mechanism with its surrounding rocks induced by a layer slip during natural gas hydrates (NGHs) extraction, this paper conducted a numerical simulation study of wellbore shear induced by a layer slip using A...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-04-01
|
Series: | Journal of Marine Science and Engineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-1312/11/4/837 |
_version_ | 1797604799151079424 |
---|---|
author | Yujing Jiang Baocheng Li Changsheng Wang Hengjie Luan Sunhao Zhang Qinglin Shan Xianzhen Cheng |
author_facet | Yujing Jiang Baocheng Li Changsheng Wang Hengjie Luan Sunhao Zhang Qinglin Shan Xianzhen Cheng |
author_sort | Yujing Jiang |
collection | DOAJ |
description | To study the shear deformation and failure characteristics of a wellbore and the interaction mechanism with its surrounding rocks induced by a layer slip during natural gas hydrates (NGHs) extraction, this paper conducted a numerical simulation study of wellbore shear induced by a layer slip using ABAQUS software and carried out a laboratory experiment of wellbore shear to verify the accuracy of the numerical model. The results show that the shear force–displacement curves obtained from the laboratory experiments and numerical simulations are consistent with five stages, including the compaction stage, linear stage, plastic stage, strain-softening stage and residual stage. The wellbore shows a “Z”-shaped deformation characteristic after its shear breakage. The shear force of the wellbore is maximum at the shear surface, and it is distributed in an approximate “M” shape along the shear surface. The axial force of the wellbore is small and uniformly distributed in the initial stage of the shear. The wellbore bending moment is minimum at the shear surface, with a value of 0, and it is distributed in a skew–symmetric wave shape along the shear surface. During the shearing, the evolution of the wellbore axial force and shear force can be classified into the distribution pattern along the radial direction on the shear surface and the pattern along the axial direction. The combination of the wellbore axial force and shear force causes the tensile–shear compound failure of the wellbore. During shearing, the wellbore and rock body gradually enter the plastic state with the increase in the shear displacement. When the entire cross-section of the wellbore is in the plastic state, a “necking” phenomenon of the wellbore begins to appear. During the shearing, the frictional dissipation energy and plastic dissipation energy increase constantly. In addition, the elastic strain energy increases to a peak and then decreases to a certain value, which remains unchanged along with the work conducted by the shear force. |
first_indexed | 2024-03-11T04:51:53Z |
format | Article |
id | doaj.art-456ac12a45514606a7fafce049e69ab6 |
institution | Directory Open Access Journal |
issn | 2077-1312 |
language | English |
last_indexed | 2024-03-11T04:51:53Z |
publishDate | 2023-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Journal of Marine Science and Engineering |
spelling | doaj.art-456ac12a45514606a7fafce049e69ab62023-11-17T19:56:45ZengMDPI AGJournal of Marine Science and Engineering2077-13122023-04-0111483710.3390/jmse11040837ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate LayerYujing Jiang0Baocheng Li1Changsheng Wang2Hengjie Luan3Sunhao Zhang4Qinglin Shan5Xianzhen Cheng6State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, ChinaState Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, ChinaState Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, ChinaState Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, ChinaGraduate School of Engineering, Nagasaki University, Nagasaki 852-8521, JapanState Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, ChinaState Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, ChinaTo study the shear deformation and failure characteristics of a wellbore and the interaction mechanism with its surrounding rocks induced by a layer slip during natural gas hydrates (NGHs) extraction, this paper conducted a numerical simulation study of wellbore shear induced by a layer slip using ABAQUS software and carried out a laboratory experiment of wellbore shear to verify the accuracy of the numerical model. The results show that the shear force–displacement curves obtained from the laboratory experiments and numerical simulations are consistent with five stages, including the compaction stage, linear stage, plastic stage, strain-softening stage and residual stage. The wellbore shows a “Z”-shaped deformation characteristic after its shear breakage. The shear force of the wellbore is maximum at the shear surface, and it is distributed in an approximate “M” shape along the shear surface. The axial force of the wellbore is small and uniformly distributed in the initial stage of the shear. The wellbore bending moment is minimum at the shear surface, with a value of 0, and it is distributed in a skew–symmetric wave shape along the shear surface. During the shearing, the evolution of the wellbore axial force and shear force can be classified into the distribution pattern along the radial direction on the shear surface and the pattern along the axial direction. The combination of the wellbore axial force and shear force causes the tensile–shear compound failure of the wellbore. During shearing, the wellbore and rock body gradually enter the plastic state with the increase in the shear displacement. When the entire cross-section of the wellbore is in the plastic state, a “necking” phenomenon of the wellbore begins to appear. During the shearing, the frictional dissipation energy and plastic dissipation energy increase constantly. In addition, the elastic strain energy increases to a peak and then decreases to a certain value, which remains unchanged along with the work conducted by the shear force.https://www.mdpi.com/2077-1312/11/4/837natural gas hydratelayer slipnumerical simulationshear instabilityenergy dissipation |
spellingShingle | Yujing Jiang Baocheng Li Changsheng Wang Hengjie Luan Sunhao Zhang Qinglin Shan Xianzhen Cheng ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate Layer Journal of Marine Science and Engineering natural gas hydrate layer slip numerical simulation shear instability energy dissipation |
title | ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate Layer |
title_full | ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate Layer |
title_fullStr | ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate Layer |
title_full_unstemmed | ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate Layer |
title_short | ABAQUS Numerical Simulation Study on the Shear Instability of a Wellbore Induced by a Slip of the Natural Gas Hydrate Layer |
title_sort | abaqus numerical simulation study on the shear instability of a wellbore induced by a slip of the natural gas hydrate layer |
topic | natural gas hydrate layer slip numerical simulation shear instability energy dissipation |
url | https://www.mdpi.com/2077-1312/11/4/837 |
work_keys_str_mv | AT yujingjiang abaqusnumericalsimulationstudyontheshearinstabilityofawellboreinducedbyaslipofthenaturalgashydratelayer AT baochengli abaqusnumericalsimulationstudyontheshearinstabilityofawellboreinducedbyaslipofthenaturalgashydratelayer AT changshengwang abaqusnumericalsimulationstudyontheshearinstabilityofawellboreinducedbyaslipofthenaturalgashydratelayer AT hengjieluan abaqusnumericalsimulationstudyontheshearinstabilityofawellboreinducedbyaslipofthenaturalgashydratelayer AT sunhaozhang abaqusnumericalsimulationstudyontheshearinstabilityofawellboreinducedbyaslipofthenaturalgashydratelayer AT qinglinshan abaqusnumericalsimulationstudyontheshearinstabilityofawellboreinducedbyaslipofthenaturalgashydratelayer AT xianzhencheng abaqusnumericalsimulationstudyontheshearinstabilityofawellboreinducedbyaslipofthenaturalgashydratelayer |