Nonlinear initial-value problems with positive global solutions

We give conditions on $m(t)$, $p(t)$, and $f(t,y,z)$ so that the nonlinear initial-value problem {gather*} frac{1}{m(t)} (p(t)y')' + f(t,y,p(t)y') = 0,quadmbox{for }t>0, y(0)=0,quad lim_{t o 0^+} p(t)y'(t) = B, end{gather*} has at least one positive solution for all $t>0$,...

Full description

Bibliographic Details
Main Authors: John V. Baxley, Cynthia G. Enloe
Format: Article
Language:English
Published: Texas State University 2003-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/conf-proc/10/b1/abstr.html
_version_ 1811260288963444736
author John V. Baxley
Cynthia G. Enloe
author_facet John V. Baxley
Cynthia G. Enloe
author_sort John V. Baxley
collection DOAJ
description We give conditions on $m(t)$, $p(t)$, and $f(t,y,z)$ so that the nonlinear initial-value problem {gather*} frac{1}{m(t)} (p(t)y')' + f(t,y,p(t)y') = 0,quadmbox{for }t>0, y(0)=0,quad lim_{t o 0^+} p(t)y'(t) = B, end{gather*} has at least one positive solution for all $t>0$, when $B$ is a sufficiently small positive constant. We allow a singularity at $t=0$ so the solution $y'(t)$ may be unbounded near $t=0$.
first_indexed 2024-04-12T18:44:08Z
format Article
id doaj.art-456e171f82b94379a299b26d94375b38
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-12T18:44:08Z
publishDate 2003-02-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-456e171f82b94379a299b26d94375b382022-12-22T03:20:39ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912003-02-01Conference107178Nonlinear initial-value problems with positive global solutionsJohn V. BaxleyCynthia G. EnloeWe give conditions on $m(t)$, $p(t)$, and $f(t,y,z)$ so that the nonlinear initial-value problem {gather*} frac{1}{m(t)} (p(t)y')' + f(t,y,p(t)y') = 0,quadmbox{for }t>0, y(0)=0,quad lim_{t o 0^+} p(t)y'(t) = B, end{gather*} has at least one positive solution for all $t>0$, when $B$ is a sufficiently small positive constant. We allow a singularity at $t=0$ so the solution $y'(t)$ may be unbounded near $t=0$.http://ejde.math.txstate.edu/conf-proc/10/b1/abstr.htmlNonlinear initial-value problemspositive global solutionsCaratheodory.
spellingShingle John V. Baxley
Cynthia G. Enloe
Nonlinear initial-value problems with positive global solutions
Electronic Journal of Differential Equations
Nonlinear initial-value problems
positive global solutions
Caratheodory.
title Nonlinear initial-value problems with positive global solutions
title_full Nonlinear initial-value problems with positive global solutions
title_fullStr Nonlinear initial-value problems with positive global solutions
title_full_unstemmed Nonlinear initial-value problems with positive global solutions
title_short Nonlinear initial-value problems with positive global solutions
title_sort nonlinear initial value problems with positive global solutions
topic Nonlinear initial-value problems
positive global solutions
Caratheodory.
url http://ejde.math.txstate.edu/conf-proc/10/b1/abstr.html
work_keys_str_mv AT johnvbaxley nonlinearinitialvalueproblemswithpositiveglobalsolutions
AT cynthiagenloe nonlinearinitialvalueproblemswithpositiveglobalsolutions