Active Mass Damper for Reducing Wind and Earthquake Vibrations of a Long-Period Bridge

An active mass damper (AMD) was developed that uses a linear motor and coil spring to reduce the vertical vibration of a long-period cable-stayed bridge subjected to wind and earthquake loads. A scaled-down bridge model and AMD were fabricated, and the control effect of the AMD was investigated expe...

Full description

Bibliographic Details
Main Author: Seongkyu Chang
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/9/3/66
Description
Summary:An active mass damper (AMD) was developed that uses a linear motor and coil spring to reduce the vertical vibration of a long-period cable-stayed bridge subjected to wind and earthquake loads. A scaled-down bridge model and AMD were fabricated, and the control effect of the AMD was investigated experimentally and analytically. The AMD was controlled via a linear quadratic Gaussian algorithm, which combines a linear quadratic regulator and Kalman filter. The dynamic properties were investigated using a 1/10 scale indoor experimental model, and the results confirmed that the measured and analytical accelerations were consistent. A vibrator was used to simulate the wind-induced vibration, and the experimental and analytical results were consistent. The proposed AMD was confirmed to damp the free vibration and harmonic load and increase the damping ratio of the bridge model from 0.17% to 9.2%. Finally, the control performance of the proposed AMD was numerically investigated with the scaled-down bridge model subjected to the El Centro and Imperial Valley-02 earthquakes. These results were compared with those of a TMD, and they confirmed that the proposed AMD could reduce excessive vertical vibrations of long-period cable-stayed bridges subjected to wind and earthquakes.
ISSN:2076-0825