Dynamic Forecast of Desert Locust Presence Using Machine Learning with a Multivariate Time Lag Sliding Window Technique

Desert locust plagues can easily cause a regional food crisis and thus affect social stability. Preventive control of the disaster highlights the early detection of hopper gregarization before they form devastating swarms. However, the response of hopper band emergence to environmental fluctuation e...

Full description

Bibliographic Details
Main Authors: Ruiqi Sun, Wenjiang Huang, Yingying Dong, Longlong Zhao, Biyao Zhang, Huiqin Ma, Yun Geng, Chao Ruan, Naichen Xing, Xidong Chen, Xueling Li
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/3/747
Description
Summary:Desert locust plagues can easily cause a regional food crisis and thus affect social stability. Preventive control of the disaster highlights the early detection of hopper gregarization before they form devastating swarms. However, the response of hopper band emergence to environmental fluctuation exhibits a time lag. To realize the dynamic forecast of band occurrence with optimal temporal predictors, we proposed an SVM-based model with a temporal sliding window technique by coupling multisource time-series imagery with historical locust ground survey observations from between 2000–2020. The sliding window method was based on a lagging variable importance ranking used to analyze the temporal organization of environmental indicators in band-forming sequences and eventually facilitate the early prediction of band emergence. Statistical results show that hopper bands are more likely to occur within 41–64 days after increased rainfall; soil moisture dynamics increasing by approximately 0.05 m³/m³ then decreasing may enhance the chance of observing bands after 73–80 days. While sparse vegetation areas with NDVI increasing from 0.18 to 0.25 tend to witness bands after 17–40 days. The forecast model combining the optimal time lags of these dynamic indicators with other static indicators allows for a 16-day extended outlook of band presence in Somalia, Ethiopia, and Kenya. Monthly predictions from February to December 2020 display an overall accuracy of 77.46%, with an average ROC-AUC of 0.767 and a mean F-score close to 0.772. The multivariate forecast framework based on the lagging effect can realize the early warning of band presence in different spatiotemporal scenarios, supporting early decisions and response strategies for desert locust preventive management.
ISSN:2072-4292