Anti-Entry Activity of Natural Flavonoids against SARS-CoV-2 by Targeting Spike RBD

COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entr...

Full description

Bibliographic Details
Main Authors: Jie-Ru Meng, Jiazheng Liu, Lu Fu, Tong Shu, Lingzhi Yang, Xueji Zhang, Zhi-Hong Jiang, Li-Ping Bai
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Viruses
Subjects:
Online Access:https://www.mdpi.com/1999-4915/15/1/160
Description
Summary:COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC<sub>50</sub> values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure–activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 <i>via</i> inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.
ISSN:1999-4915