Properties of meromorphic solutions of first-order differential-difference equations

For the first-order differential-difference equations of the form A(z)f(z+1)+B(z)f′(z)+C(z)f(z)=F(z),A\left(z)f\left(z+1)+B\left(z)f^{\prime} \left(z)+C\left(z)f\left(z)=F\left(z), where A(z),B(z),C(z)A\left(z),B\left(z),C\left(z), and F(z)F\left(z) are polynomials, the existence, growth, zeros, pol...

Full description

Bibliographic Details
Main Authors: Wu Lihao, Chen Baoqin, Li Sheng
Format: Article
Language:English
Published: De Gruyter 2023-12-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2023-0147
_version_ 1797405101764116480
author Wu Lihao
Chen Baoqin
Li Sheng
author_facet Wu Lihao
Chen Baoqin
Li Sheng
author_sort Wu Lihao
collection DOAJ
description For the first-order differential-difference equations of the form A(z)f(z+1)+B(z)f′(z)+C(z)f(z)=F(z),A\left(z)f\left(z+1)+B\left(z)f^{\prime} \left(z)+C\left(z)f\left(z)=F\left(z), where A(z),B(z),C(z)A\left(z),B\left(z),C\left(z), and F(z)F\left(z) are polynomials, the existence, growth, zeros, poles, and fixed points of their nonconstant meromorphic solutions are investigated. It is shown that all nonconstant meromorphic solutions are transcendental when degB(z)<deg{A(z)+C(z)}+1{\rm{\deg }}B\left(z)\lt {\rm{\deg }}\left\{A\left(z)+C\left(z)\right\}+1 and all transcendental solutions are of order at least 1. For the finite-order transcendental solution f(z)f\left(z), the relationship between ρ(f)\rho (f) and max{λ(f),λ(1∕f)}\max \left\{\lambda (f),\lambda \left(1/f)\right\} is discussed. Some examples for sharpness of our results are provided.
first_indexed 2024-03-09T03:05:51Z
format Article
id doaj.art-45830c7feb6d4c30a7cf9aa04fd15bcc
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-03-09T03:05:51Z
publishDate 2023-12-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-45830c7feb6d4c30a7cf9aa04fd15bcc2023-12-04T07:59:56ZengDe GruyterOpen Mathematics2391-54552023-12-012118890890210.1515/math-2023-0147Properties of meromorphic solutions of first-order differential-difference equationsWu Lihao0Chen Baoqin1Li Sheng2School of Computer Engineering, Guangzhou City University of Technology, Guangzhou 510800, ChinaSchool of Mathematics and Computer, Guangdong Ocean University, Zhanjiang 524088, ChinaSchool of Mathematics and Computer, Guangdong Ocean University, Zhanjiang 524088, ChinaFor the first-order differential-difference equations of the form A(z)f(z+1)+B(z)f′(z)+C(z)f(z)=F(z),A\left(z)f\left(z+1)+B\left(z)f^{\prime} \left(z)+C\left(z)f\left(z)=F\left(z), where A(z),B(z),C(z)A\left(z),B\left(z),C\left(z), and F(z)F\left(z) are polynomials, the existence, growth, zeros, poles, and fixed points of their nonconstant meromorphic solutions are investigated. It is shown that all nonconstant meromorphic solutions are transcendental when degB(z)<deg{A(z)+C(z)}+1{\rm{\deg }}B\left(z)\lt {\rm{\deg }}\left\{A\left(z)+C\left(z)\right\}+1 and all transcendental solutions are of order at least 1. For the finite-order transcendental solution f(z)f\left(z), the relationship between ρ(f)\rho (f) and max{λ(f),λ(1∕f)}\max \left\{\lambda (f),\lambda \left(1/f)\right\} is discussed. Some examples for sharpness of our results are provided.https://doi.org/10.1515/math-2023-0147differential-difference equationgrowth and zerosmeromorphic solution30d3539a06
spellingShingle Wu Lihao
Chen Baoqin
Li Sheng
Properties of meromorphic solutions of first-order differential-difference equations
Open Mathematics
differential-difference equation
growth and zeros
meromorphic solution
30d35
39a06
title Properties of meromorphic solutions of first-order differential-difference equations
title_full Properties of meromorphic solutions of first-order differential-difference equations
title_fullStr Properties of meromorphic solutions of first-order differential-difference equations
title_full_unstemmed Properties of meromorphic solutions of first-order differential-difference equations
title_short Properties of meromorphic solutions of first-order differential-difference equations
title_sort properties of meromorphic solutions of first order differential difference equations
topic differential-difference equation
growth and zeros
meromorphic solution
30d35
39a06
url https://doi.org/10.1515/math-2023-0147
work_keys_str_mv AT wulihao propertiesofmeromorphicsolutionsoffirstorderdifferentialdifferenceequations
AT chenbaoqin propertiesofmeromorphicsolutionsoffirstorderdifferentialdifferenceequations
AT lisheng propertiesofmeromorphicsolutionsoffirstorderdifferentialdifferenceequations