Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central Europe
<p>Seasonal variability of non-refractory PM<span class="inline-formula"><sub>1</sub></span> (NR-PM<span class="inline-formula"><sub>1</sub></span>) was studied at a rural background site (National Atmospheric Observatory Koše...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-05-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/5829/2022/acp-22-5829-2022.pdf |
_version_ | 1818541295803564032 |
---|---|
author | P. Pokorná N. Zíková P. Vodička R. Lhotka R. Lhotka S. Mbengue A. Holubová Šmejkalová V. Riffault J. Ondráček J. Schwarz V. Ždímal |
author_facet | P. Pokorná N. Zíková P. Vodička R. Lhotka R. Lhotka S. Mbengue A. Holubová Šmejkalová V. Riffault J. Ondráček J. Schwarz V. Ždímal |
author_sort | P. Pokorná |
collection | DOAJ |
description | <p>Seasonal variability of non-refractory PM<span class="inline-formula"><sub>1</sub></span> (NR-PM<span class="inline-formula"><sub>1</sub></span>) was studied at a rural background site (National Atmospheric Observatory Košetice – NAOK) in the Czech Republic to investigate the effect of regional and long-range atmospheric transport in central Europe. NR-PM<span class="inline-formula"><sub>1</sub></span> measurements were performed by compact time-of-flight aerosol mass spectrometry (C-ToF-AMS), and the chemically speciated mass size
distributions, density, shape, and origin were discussed. Average PM<span class="inline-formula"><sub>1</sub></span>
concentrations, calculated as the sum of the NR-PM<span class="inline-formula"><sub>1</sub></span> and the equivalent black carbon (eBC) concentrations measured by an aethalometer (AE), were 8.58 <span class="inline-formula">±</span> 3.70 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> in summer and 10.08 <span class="inline-formula">±</span> 8.04 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> in winter. Organics were dominant during both campaigns (summer/winter: 4.97 <span class="inline-formula">±</span> 2.92<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="539a58614ea8688159b8effbc6d3da8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00001.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00001.png"/></svg:svg></span></span>4.55 <span class="inline-formula">±</span> 4.40 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>),
followed by SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="cc76bdecf8cb88b8edd7164534c60e80"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00002.svg" width="13pt" height="17pt" src="acp-22-5829-2022-ie00002.png"/></svg:svg></span></span>in summer (1.68 <span class="inline-formula">±</span> 0.81/1.36 <span class="inline-formula">±</span> 1.38 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>)
and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d4917cb251612ae03efebb0a66479930"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00003.svg" width="9pt" height="16pt" src="acp-22-5829-2022-ie00003.png"/></svg:svg></span></span> in winter (0.67 <span class="inline-formula">±</span> 0.38/2.03 <span class="inline-formula">±</span> 1.71 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>). The accumulation mode dominated the average mass size distribution during both seasons, with larger particles of all species measured in winter (mode diameters: Org: 334<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6e9042c80619a800f49fe8d9da77f107"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00004.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00004.png"/></svg:svg></span></span>413 nm, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="b99659e9caa622cdf93197cf25817eb9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00005.svg" width="9pt" height="16pt" src="acp-22-5829-2022-ie00005.png"/></svg:svg></span></span>: 377/501 nm, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5c032620c8f70b9e15908a9c5486e9a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00006.svg" width="13pt" height="17pt" src="acp-22-5829-2022-ie00006.png"/></svg:svg></span></span>: 400<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="cde794723cf5af95a282a8ea7937b694"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00007.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00007.png"/></svg:svg></span></span>547 nm, and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="05b70fd8394bf4db7d404440a905bbf8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00008.svg" width="8pt" height="15pt" src="acp-22-5829-2022-ie00008.png"/></svg:svg></span></span>: 489<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M33" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1f30da269e2118f293c445361b5afb08"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00009.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00009.png"/></svg:svg></span></span>515 nm) indicating regional and long-range transport. However, since the winter aerosols were less oxidized than the summer aerosols (comparing fragments <span class="inline-formula"><i>f</i><sub>44</sub></span> and <span class="inline-formula"><i>f</i><sub>43</sub></span>), the importance of local sources in the cold part of the year was still enough to be considered. Although aged continental air masses from the south-east (SE) were rare in summer (7 %), they were related to the highest concentrations of PM<span class="inline-formula"><sub>1</sub></span>, eBC, and all NR-PM<span class="inline-formula"><sub>1</sub></span> species, especially SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="af927745ea04007aff9f618f883ce002"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00010.svg" width="13pt" height="17pt" src="acp-22-5829-2022-ie00010.png"/></svg:svg></span></span> and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="0da33746d32502af66ce0390ef82396d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00011.svg" width="8pt" height="15pt" src="acp-22-5829-2022-ie00011.png"/></svg:svg></span></span>. In winter, slow continental air masses from the south-west (SW) (44 %) were linked to inversion conditions over central Europe and were associated with the highest concentrations among all NR-PM<span class="inline-formula"><sub>1</sub></span> species as well as PM<span class="inline-formula"><sub>1</sub></span> and eBC. Average PM<span class="inline-formula"><sub>1</sub></span> material density (<span class="inline-formula"><i>ρ</i><sub>m</sub></span>) corresponded to higher inorganic contents in both seasons (summer: <span class="inline-formula">∼</span> 1.30 g cm<span class="inline-formula"><sup>−3</sup></span> and winter: <span class="inline-formula">∼</span> 1.40 g cm<span class="inline-formula"><sup>−3</sup></span>).
During episodes of higher mass concentrations <span class="inline-formula"><i>ρ</i><sub>m</sub></span> ranged
from 1.30–1.40 g cm<span class="inline-formula"><sup>−3</sup></span> in summer and from 1.30–1.50 g cm<span class="inline-formula"><sup>−3</sup></span> in winter. The dynamic shape factors (<span class="inline-formula"><i>χ</i></span>) decreased slightly with particle mobility diameter (<span class="inline-formula"><i>D</i><sub>m</sub></span>) in both seasons. This study provides insights into the seasonal effects and air mass variability on aerosol particles, focusing on episodes of high mass and number concentrations measured at a central European rural background site.</p> |
first_indexed | 2024-12-11T22:06:47Z |
format | Article |
id | doaj.art-4585cc14f76a466ca6816e3443d06420 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-11T22:06:47Z |
publishDate | 2022-05-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-4585cc14f76a466ca6816e3443d064202022-12-22T00:48:56ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-05-01225829585810.5194/acp-22-5829-2022Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central EuropeP. Pokorná0N. Zíková1P. Vodička2R. Lhotka3R. Lhotka4S. Mbengue5A. Holubová Šmejkalová6V. Riffault7J. Ondráček8J. Schwarz9V. Ždímal10Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02 Prague, Czech RepublicDepartment of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02 Prague, Czech RepublicDepartment of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02 Prague, Czech RepublicDepartment of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02 Prague, Czech RepublicInstitute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech RepublicGlobal Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech RepublicCzech Hydrometeorological Institute, Air Quality Division, Na Šabatce 2050/17, 143 06 Prague, Czech RepublicIMT Nord Europe, Institut Mines-Télécom, Université de Lille, Centre for Energy and Environment, 59000 Lille, FranceDepartment of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02 Prague, Czech RepublicDepartment of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02 Prague, Czech RepublicDepartment of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135/1, 165 02 Prague, Czech Republic<p>Seasonal variability of non-refractory PM<span class="inline-formula"><sub>1</sub></span> (NR-PM<span class="inline-formula"><sub>1</sub></span>) was studied at a rural background site (National Atmospheric Observatory Košetice – NAOK) in the Czech Republic to investigate the effect of regional and long-range atmospheric transport in central Europe. NR-PM<span class="inline-formula"><sub>1</sub></span> measurements were performed by compact time-of-flight aerosol mass spectrometry (C-ToF-AMS), and the chemically speciated mass size distributions, density, shape, and origin were discussed. Average PM<span class="inline-formula"><sub>1</sub></span> concentrations, calculated as the sum of the NR-PM<span class="inline-formula"><sub>1</sub></span> and the equivalent black carbon (eBC) concentrations measured by an aethalometer (AE), were 8.58 <span class="inline-formula">±</span> 3.70 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> in summer and 10.08 <span class="inline-formula">±</span> 8.04 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> in winter. Organics were dominant during both campaigns (summer/winter: 4.97 <span class="inline-formula">±</span> 2.92<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="539a58614ea8688159b8effbc6d3da8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00001.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00001.png"/></svg:svg></span></span>4.55 <span class="inline-formula">±</span> 4.40 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>), followed by SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="cc76bdecf8cb88b8edd7164534c60e80"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00002.svg" width="13pt" height="17pt" src="acp-22-5829-2022-ie00002.png"/></svg:svg></span></span>in summer (1.68 <span class="inline-formula">±</span> 0.81/1.36 <span class="inline-formula">±</span> 1.38 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="d4917cb251612ae03efebb0a66479930"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00003.svg" width="9pt" height="16pt" src="acp-22-5829-2022-ie00003.png"/></svg:svg></span></span> in winter (0.67 <span class="inline-formula">±</span> 0.38/2.03 <span class="inline-formula">±</span> 1.71 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>). The accumulation mode dominated the average mass size distribution during both seasons, with larger particles of all species measured in winter (mode diameters: Org: 334<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6e9042c80619a800f49fe8d9da77f107"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00004.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00004.png"/></svg:svg></span></span>413 nm, NO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M29" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="9pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="b99659e9caa622cdf93197cf25817eb9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00005.svg" width="9pt" height="16pt" src="acp-22-5829-2022-ie00005.png"/></svg:svg></span></span>: 377/501 nm, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="5c032620c8f70b9e15908a9c5486e9a8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00006.svg" width="13pt" height="17pt" src="acp-22-5829-2022-ie00006.png"/></svg:svg></span></span>: 400<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M31" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="cde794723cf5af95a282a8ea7937b694"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00007.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00007.png"/></svg:svg></span></span>547 nm, and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="05b70fd8394bf4db7d404440a905bbf8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00008.svg" width="8pt" height="15pt" src="acp-22-5829-2022-ie00008.png"/></svg:svg></span></span>: 489<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M33" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1f30da269e2118f293c445361b5afb08"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00009.svg" width="8pt" height="14pt" src="acp-22-5829-2022-ie00009.png"/></svg:svg></span></span>515 nm) indicating regional and long-range transport. However, since the winter aerosols were less oxidized than the summer aerosols (comparing fragments <span class="inline-formula"><i>f</i><sub>44</sub></span> and <span class="inline-formula"><i>f</i><sub>43</sub></span>), the importance of local sources in the cold part of the year was still enough to be considered. Although aged continental air masses from the south-east (SE) were rare in summer (7 %), they were related to the highest concentrations of PM<span class="inline-formula"><sub>1</sub></span>, eBC, and all NR-PM<span class="inline-formula"><sub>1</sub></span> species, especially SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>-</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="af927745ea04007aff9f618f883ce002"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00010.svg" width="13pt" height="17pt" src="acp-22-5829-2022-ie00010.png"/></svg:svg></span></span> and NH<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="0da33746d32502af66ce0390ef82396d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-5829-2022-ie00011.svg" width="8pt" height="15pt" src="acp-22-5829-2022-ie00011.png"/></svg:svg></span></span>. In winter, slow continental air masses from the south-west (SW) (44 %) were linked to inversion conditions over central Europe and were associated with the highest concentrations among all NR-PM<span class="inline-formula"><sub>1</sub></span> species as well as PM<span class="inline-formula"><sub>1</sub></span> and eBC. Average PM<span class="inline-formula"><sub>1</sub></span> material density (<span class="inline-formula"><i>ρ</i><sub>m</sub></span>) corresponded to higher inorganic contents in both seasons (summer: <span class="inline-formula">∼</span> 1.30 g cm<span class="inline-formula"><sup>−3</sup></span> and winter: <span class="inline-formula">∼</span> 1.40 g cm<span class="inline-formula"><sup>−3</sup></span>). During episodes of higher mass concentrations <span class="inline-formula"><i>ρ</i><sub>m</sub></span> ranged from 1.30–1.40 g cm<span class="inline-formula"><sup>−3</sup></span> in summer and from 1.30–1.50 g cm<span class="inline-formula"><sup>−3</sup></span> in winter. The dynamic shape factors (<span class="inline-formula"><i>χ</i></span>) decreased slightly with particle mobility diameter (<span class="inline-formula"><i>D</i><sub>m</sub></span>) in both seasons. This study provides insights into the seasonal effects and air mass variability on aerosol particles, focusing on episodes of high mass and number concentrations measured at a central European rural background site.</p>https://acp.copernicus.org/articles/22/5829/2022/acp-22-5829-2022.pdf |
spellingShingle | P. Pokorná N. Zíková P. Vodička R. Lhotka R. Lhotka S. Mbengue A. Holubová Šmejkalová V. Riffault J. Ondráček J. Schwarz V. Ždímal Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central Europe Atmospheric Chemistry and Physics |
title | Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central Europe |
title_full | Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central Europe |
title_fullStr | Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central Europe |
title_full_unstemmed | Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central Europe |
title_short | Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM<sub>1</sub> measured at a rural background site in central Europe |
title_sort | chemically speciated mass size distribution particle density shape and origin of non refractory pm sub 1 sub measured at a rural background site in central europe |
url | https://acp.copernicus.org/articles/22/5829/2022/acp-22-5829-2022.pdf |
work_keys_str_mv | AT ppokorna chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT nzikova chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT pvodicka chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT rlhotka chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT rlhotka chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT smbengue chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT aholubovasmejkalova chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT vriffault chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT jondracek chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT jschwarz chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope AT vzdimal chemicallyspeciatedmasssizedistributionparticledensityshapeandoriginofnonrefractorypmsub1submeasuredataruralbackgroundsiteincentraleurope |