Performance testing and optimization of a split-type air conditioner with evaporatively-cooled condenser

In this study, the performance of a split-type air conditioner with evaporatively-cooled condenser was examined. The effect of evaporative cooling of the condenser on the performance parameters and energy efficiency were determined by comparing the results from an air conditioner with conventional t...

Full description

Bibliographic Details
Main Authors: İbrahim Atmaca, Ali Şenol, Ahmet Çağlar
Format: Article
Language:English
Published: Elsevier 2022-08-01
Series:Engineering Science and Technology, an International Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2215098621001853
Description
Summary:In this study, the performance of a split-type air conditioner with evaporatively-cooled condenser was examined. The effect of evaporative cooling of the condenser on the performance parameters and energy efficiency were determined by comparing the results from an air conditioner with conventional type air-cooled condenser. Both systems were tested simultaneously for different ambient conditions. An optimization study were also performed to find out the optimal climatic conditions for the proposed system. The effects of outdoor temperature and relative humidity on both total power consumption and COP were discussed. With the evaporative cooling of the condenser of the split-type air conditioner, the COP increased by 10.2%–35.3%, and the cooling capacity increased by 5.8%–18.6%, while the total power consumption decreased by 4%–12.4%. The results showed that the outdoor relative humidity and temperature had a significant influence on the COP, cooling capacity, and total power input for split-type air conditioners with an evaporative condenser. The results of the optimization study showed that the optimal condition maximizing the COP of the proposed system was confirmed as higher outdoor temperature and lower relative humidity. For the total power consumption, however, the optimal condition was found as medium levels of the temperature and humidity. The effect of the outdoor temperature on the electricity consumption is larger than that of the RH, and this provides an opportunity of using the proposed system in a wide-range climatic conditions.
ISSN:2215-0986