Quantum-chemical insights from deep tensor neural networks

Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in t...

Full description

Bibliographic Details
Main Authors: Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R. Müller, Alexandre Tkatchenko
Format: Article
Language:English
Published: Nature Portfolio 2017-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/ncomms13890
_version_ 1830287740401352704
author Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
Klaus R. Müller
Alexandre Tkatchenko
author_facet Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
Klaus R. Müller
Alexandre Tkatchenko
author_sort Kristof T. Schütt
collection DOAJ
description Machine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in the training data.
first_indexed 2024-12-19T04:23:02Z
format Article
id doaj.art-459cc75532c24b7085302dabbc24454d
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-19T04:23:02Z
publishDate 2017-01-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-459cc75532c24b7085302dabbc24454d2022-12-21T20:36:06ZengNature PortfolioNature Communications2041-17232017-01-01811810.1038/ncomms13890Quantum-chemical insights from deep tensor neural networksKristof T. Schütt0Farhad Arbabzadah1Stefan Chmiela2Klaus R. Müller3Alexandre Tkatchenko4Machine Learning Group, Technische Universität BerlinMachine Learning Group, Technische Universität BerlinMachine Learning Group, Technische Universität BerlinMachine Learning Group, Technische Universität BerlinTheory Department, Fritz-Haber-Institut der Max-Planck-GesellschaftMachine learning is an increasingly popular approach to analyse data and make predictions. Here the authors develop a ‘deep learning’ framework for quantitative predictions and qualitative understanding of quantum-mechanical observables of chemical systems, beyond properties trivially contained in the training data.https://doi.org/10.1038/ncomms13890
spellingShingle Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
Klaus R. Müller
Alexandre Tkatchenko
Quantum-chemical insights from deep tensor neural networks
Nature Communications
title Quantum-chemical insights from deep tensor neural networks
title_full Quantum-chemical insights from deep tensor neural networks
title_fullStr Quantum-chemical insights from deep tensor neural networks
title_full_unstemmed Quantum-chemical insights from deep tensor neural networks
title_short Quantum-chemical insights from deep tensor neural networks
title_sort quantum chemical insights from deep tensor neural networks
url https://doi.org/10.1038/ncomms13890
work_keys_str_mv AT kristoftschutt quantumchemicalinsightsfromdeeptensorneuralnetworks
AT farhadarbabzadah quantumchemicalinsightsfromdeeptensorneuralnetworks
AT stefanchmiela quantumchemicalinsightsfromdeeptensorneuralnetworks
AT klausrmuller quantumchemicalinsightsfromdeeptensorneuralnetworks
AT alexandretkatchenko quantumchemicalinsightsfromdeeptensorneuralnetworks