Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville Problem

Properties of the minimal eigenvalue corresponding to the positive eigenfunction of a nonlinear eigenvalue problem for an ordinary differential equation are studied. This problem is approximated by a mesh scheme of the finite element method. The error of approximate solutions is investigated. Theore...

Full description

Bibliographic Details
Main Authors: V.S. Zheltukhin, S.I. Solov’ev, P.S. Solov’ev
Format: Article
Language:English
Published: Kazan Federal University 2015-06-01
Series:Учёные записки Казанского университета. Серия Физико-математические науки
Subjects:
Online Access:https://kpfu.ru/portal/docs/F1793906104/157_2_phys_mat_4.pdf
_version_ 1797859142343327744
author V.S. Zheltukhin
S.I. Solov’ev
P.S. Solov’ev
author_facet V.S. Zheltukhin
S.I. Solov’ev
P.S. Solov’ev
author_sort V.S. Zheltukhin
collection DOAJ
description Properties of the minimal eigenvalue corresponding to the positive eigenfunction of a nonlinear eigenvalue problem for an ordinary differential equation are studied. This problem is approximated by a mesh scheme of the finite element method. The error of approximate solutions is investigated. Theoretical results are illustrated by numerical experiments for a model eigenvalue problem.
first_indexed 2024-04-09T21:24:43Z
format Article
id doaj.art-45d2cbba197444b987ac1ee993d7d7b2
institution Directory Open Access Journal
issn 2541-7746
2500-2198
language English
last_indexed 2024-04-09T21:24:43Z
publishDate 2015-06-01
publisher Kazan Federal University
record_format Article
series Учёные записки Казанского университета. Серия Физико-математические науки
spelling doaj.art-45d2cbba197444b987ac1ee993d7d7b22023-03-27T16:38:20ZengKazan Federal UniversityУчёные записки Казанского университета. Серия Физико-математические науки2541-77462500-21982015-06-0115724054Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville ProblemV.S. Zheltukhin0S.I. Solov’ev1P.S. Solov’ev2Kazan National Research Technological University, Kazan, 420015 RussiaKazan Federal University, Kazan, 420008 RussiaKazan Federal University, Kazan, 420008 RussiaProperties of the minimal eigenvalue corresponding to the positive eigenfunction of a nonlinear eigenvalue problem for an ordinary differential equation are studied. This problem is approximated by a mesh scheme of the finite element method. The error of approximate solutions is investigated. Theoretical results are illustrated by numerical experiments for a model eigenvalue problem.https://kpfu.ru/portal/docs/F1793906104/157_2_phys_mat_4.pdfeigenvaluepositive eigenfunctionnonlinear eigenvalue problemordinary differential equationsturm–liouville problemfinite element method
spellingShingle V.S. Zheltukhin
S.I. Solov’ev
P.S. Solov’ev
Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville Problem
Учёные записки Казанского университета. Серия Физико-математические науки
eigenvalue
positive eigenfunction
nonlinear eigenvalue problem
ordinary differential equation
sturm–liouville problem
finite element method
title Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville Problem
title_full Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville Problem
title_fullStr Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville Problem
title_full_unstemmed Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville Problem
title_short Approximation of the Minimal Eigenvalue for a Nonlinear Sturm–Liouville Problem
title_sort approximation of the minimal eigenvalue for a nonlinear sturm liouville problem
topic eigenvalue
positive eigenfunction
nonlinear eigenvalue problem
ordinary differential equation
sturm–liouville problem
finite element method
url https://kpfu.ru/portal/docs/F1793906104/157_2_phys_mat_4.pdf
work_keys_str_mv AT vszheltukhin approximationoftheminimaleigenvalueforanonlinearsturmliouvilleproblem
AT sisolovev approximationoftheminimaleigenvalueforanonlinearsturmliouvilleproblem
AT pssolovev approximationoftheminimaleigenvalueforanonlinearsturmliouvilleproblem