EarGait: Estimation of Temporal Gait Parameters from Hearing Aid Integrated Inertial Sensors

Wearable sensors are able to monitor physical health in a home environment and detect changes in gait patterns over time. To ensure long-term user engagement, wearable sensors need to be seamlessly integrated into the user’s daily life, such as hearing aids or earbuds. Therefore, we present EarGait,...

Full description

Bibliographic Details
Main Authors: Ann-Kristin Seifer, Eva Dorschky, Arne Küderle, Hamid Moradi, Ronny Hannemann, Björn M. Eskofier
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/14/6565
Description
Summary:Wearable sensors are able to monitor physical health in a home environment and detect changes in gait patterns over time. To ensure long-term user engagement, wearable sensors need to be seamlessly integrated into the user’s daily life, such as hearing aids or earbuds. Therefore, we present EarGait, an open-source Python toolbox for gait analysis using inertial sensors integrated into hearing aids. This work contributes a validation for gait event detection algorithms and the estimation of temporal parameters using ear-worn sensors. We perform a comparative analysis of two algorithms based on acceleration data and propose a modified version of one of the algorithms. We conducted a study with healthy young and elderly participants to record walking data using the hearing aid’s integrated sensors and an optical motion capture system as a reference. All algorithms were able to detect gait events (initial and terminal contacts), and the improved algorithm performed best, detecting 99.8% of initial contacts and obtaining a mean stride time error of 12 ± 32 ms. The existing algorithms faced challenges in determining the laterality of gait events. To address this limitation, we propose modifications that enhance the determination of the step laterality (ipsi- or contralateral), resulting in a 50% reduction in stride time error. Moreover, the improved version is shown to be robust to different study populations and sampling frequencies but is sensitive to walking speed. This work establishes a solid foundation for a comprehensive gait analysis system integrated into hearing aids that will facilitate continuous and long-term home monitoring.
ISSN:1424-8220