Asymptotics of approximation of functions by conjugate Poisson integrals

Among the actual problems of the theory of approximation of functions one should highlight a wide range of extremal problems, in particular, studying the approximation of functional classes by various linear methods of summation of the Fourier series. In this paper, we consider the well-known Lipsch...

Full description

Bibliographic Details
Main Authors: I.V. Kal'chuk, Yu.I. Kharkevych, K.V. Pozharska
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2020-06-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/3893
_version_ 1827281270139256832
author I.V. Kal'chuk
Yu.I. Kharkevych
K.V. Pozharska
author_facet I.V. Kal'chuk
Yu.I. Kharkevych
K.V. Pozharska
author_sort I.V. Kal'chuk
collection DOAJ
description Among the actual problems of the theory of approximation of functions one should highlight a wide range of extremal problems, in particular, studying the approximation of functional classes by various linear methods of summation of the Fourier series. In this paper, we consider the well-known Lipschitz class $\textrm{Lip}_1\alpha $, i.e. the class of continuous $ 2\pi $-periodic functions satisfying the Lipschitz condition of order $\alpha$, $0<\alpha\le 1$, and the conjugate Poisson integral acts as the approximating operator. One of the relevant tasks at present is the possibility of finding constants for asymptotic terms of the indicated degree of smallness (the so-called Kolmogorov-Nikol'skii constants) in asymptotic distributions of approximations by the conjugate Poisson integrals of functions from the Lipschitz class in the uniform metric. In this paper, complete asymptotic expansions are obtained for the exact upper bounds of deviations of the conjugate Poisson integrals from functions from the class $\textrm{Lip}_1\alpha $. These expansions make it possible to write down the Kolmogorov-Nikol'skii constants of the arbitrary order of smallness.
first_indexed 2024-04-24T08:57:23Z
format Article
id doaj.art-45ea94f144854341b80af949c895d080
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:57:23Z
publishDate 2020-06-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-45ea94f144854341b80af949c895d0802024-04-16T07:00:37ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102020-06-0112113814710.15330/cmp.12.1.138-1473386Asymptotics of approximation of functions by conjugate Poisson integralsI.V. Kal'chuk0https://orcid.org/0000-0001-8822-3716Yu.I. Kharkevych1https://orcid.org/0000-0002-8577-5096K.V. Pozharska2https://orcid.org/0000-0001-7599-8117Lesya Ukrainka East European National University, 13 Voli avenue, 43025, Lutsk, UkraineLesya Ukrainka East European National University, 13 Voli avenue, 43025, Lutsk, UkraineInstitute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01601, Kyiv, UkraineAmong the actual problems of the theory of approximation of functions one should highlight a wide range of extremal problems, in particular, studying the approximation of functional classes by various linear methods of summation of the Fourier series. In this paper, we consider the well-known Lipschitz class $\textrm{Lip}_1\alpha $, i.e. the class of continuous $ 2\pi $-periodic functions satisfying the Lipschitz condition of order $\alpha$, $0<\alpha\le 1$, and the conjugate Poisson integral acts as the approximating operator. One of the relevant tasks at present is the possibility of finding constants for asymptotic terms of the indicated degree of smallness (the so-called Kolmogorov-Nikol'skii constants) in asymptotic distributions of approximations by the conjugate Poisson integrals of functions from the Lipschitz class in the uniform metric. In this paper, complete asymptotic expansions are obtained for the exact upper bounds of deviations of the conjugate Poisson integrals from functions from the class $\textrm{Lip}_1\alpha $. These expansions make it possible to write down the Kolmogorov-Nikol'skii constants of the arbitrary order of smallness.https://journals.pnu.edu.ua/index.php/cmp/article/view/3893poisson integralasymptotic expansionconjugate functionkolmogorov-nikol'skii problem
spellingShingle I.V. Kal'chuk
Yu.I. Kharkevych
K.V. Pozharska
Asymptotics of approximation of functions by conjugate Poisson integrals
Karpatsʹkì Matematičnì Publìkacìï
poisson integral
asymptotic expansion
conjugate function
kolmogorov-nikol'skii problem
title Asymptotics of approximation of functions by conjugate Poisson integrals
title_full Asymptotics of approximation of functions by conjugate Poisson integrals
title_fullStr Asymptotics of approximation of functions by conjugate Poisson integrals
title_full_unstemmed Asymptotics of approximation of functions by conjugate Poisson integrals
title_short Asymptotics of approximation of functions by conjugate Poisson integrals
title_sort asymptotics of approximation of functions by conjugate poisson integrals
topic poisson integral
asymptotic expansion
conjugate function
kolmogorov-nikol'skii problem
url https://journals.pnu.edu.ua/index.php/cmp/article/view/3893
work_keys_str_mv AT ivkalchuk asymptoticsofapproximationoffunctionsbyconjugatepoissonintegrals
AT yuikharkevych asymptoticsofapproximationoffunctionsbyconjugatepoissonintegrals
AT kvpozharska asymptoticsofapproximationoffunctionsbyconjugatepoissonintegrals