Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
<p>Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative <span class="inline-formula">CO<sub>2</sub></span> emissions. This bioenergy with CCS (BECCS) technol...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-04-01
|
Series: | Earth System Dynamics |
Online Access: | https://esd.copernicus.org/articles/13/779/2022/esd-13-779-2022.pdf |
_version_ | 1818059693773291520 |
---|---|
author | I. Melnikova I. Melnikova O. Boucher P. Cadule K. Tanaka K. Tanaka T. Gasser T. Hajima Y. Quilcaille H. Shiogama R. Séférian K. Tachiiri K. Tachiiri N. Vuichard T. Yokohata P. Ciais |
author_facet | I. Melnikova I. Melnikova O. Boucher P. Cadule K. Tanaka K. Tanaka T. Gasser T. Hajima Y. Quilcaille H. Shiogama R. Séférian K. Tachiiri K. Tachiiri N. Vuichard T. Yokohata P. Ciais |
author_sort | I. Melnikova |
collection | DOAJ |
description | <p>Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative <span class="inline-formula">CO<sub>2</sub></span> emissions. This bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth system models (ESMs) to explore the consequences of large-scale BECCS deployment on the climate–carbon cycle feedbacks under the CMIP6 SSP5-3.4-OS overshoot scenario keeping in mind that all these models use generic crop vegetation
to simulate BECCS. First, we evaluate the land cover representation by ESMs
and highlight the inconsistencies that emerge during translation of the data from integrated assessment models (IAMs) that are used to develop the
scenario. Second, we evaluate the land-use change (LUC) emissions of ESMs
against bookkeeping models. Finally, we show that an extensive cropland
expansion for BECCS causes ecosystem carbon loss that drives the acceleration of carbon turnover and affects the <span class="inline-formula">CO<sub>2</sub></span> fertilization
effect- and climate-change-driven land carbon uptake. Over the 2000–2100
period, the LUC for BECCS leads to an offset of the <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake by 12.2 % and amplifies the climate-change-driven carbon loss by 14.6 %. A human choice on land area
allocation for energy crops should take into account not only the potential
amount of the bioenergy yield but also the LUC emissions, and the associated loss of future potential change in the carbon uptake. The dependency of the land carbon uptake on LUC is strong in the SSP5-3.4-OS scenario, but it also affects other Shared Socioeconomic Pathway (SSP) scenarios and should be taken into account by the IAM teams. Future studies should further investigate the trade-offs between the carbon gains from the bioenergy yield and losses from the reduced <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake where BECCS is applied.</p> |
first_indexed | 2024-12-10T13:20:35Z |
format | Article |
id | doaj.art-45eb1924d8394aa0a05ef0f1f1c627b7 |
institution | Directory Open Access Journal |
issn | 2190-4979 2190-4987 |
language | English |
last_indexed | 2024-12-10T13:20:35Z |
publishDate | 2022-04-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Earth System Dynamics |
spelling | doaj.art-45eb1924d8394aa0a05ef0f1f1c627b72022-12-22T01:47:21ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872022-04-011377979410.5194/esd-13-779-2022Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenariosI. Melnikova0I. Melnikova1O. Boucher2P. Cadule3K. Tanaka4K. Tanaka5T. Gasser6T. Hajima7Y. Quilcaille8H. Shiogama9R. Séférian10K. Tachiiri11K. Tachiiri12N. Vuichard13T. Yokohata14P. Ciais15Institut Pierre-Simon Laplace (IPSL), Sorbonne Université/CNRS, Paris, FranceLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, FranceInstitut Pierre-Simon Laplace (IPSL), Sorbonne Université/CNRS, Paris, FranceInstitut Pierre-Simon Laplace (IPSL), Sorbonne Université/CNRS, Paris, FranceLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, FranceEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanInternational Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaResearch Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, JapanInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, SwitzerlandEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanResearch Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, JapanLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, FranceEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France<p>Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative <span class="inline-formula">CO<sub>2</sub></span> emissions. This bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth system models (ESMs) to explore the consequences of large-scale BECCS deployment on the climate–carbon cycle feedbacks under the CMIP6 SSP5-3.4-OS overshoot scenario keeping in mind that all these models use generic crop vegetation to simulate BECCS. First, we evaluate the land cover representation by ESMs and highlight the inconsistencies that emerge during translation of the data from integrated assessment models (IAMs) that are used to develop the scenario. Second, we evaluate the land-use change (LUC) emissions of ESMs against bookkeeping models. Finally, we show that an extensive cropland expansion for BECCS causes ecosystem carbon loss that drives the acceleration of carbon turnover and affects the <span class="inline-formula">CO<sub>2</sub></span> fertilization effect- and climate-change-driven land carbon uptake. Over the 2000–2100 period, the LUC for BECCS leads to an offset of the <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake by 12.2 % and amplifies the climate-change-driven carbon loss by 14.6 %. A human choice on land area allocation for energy crops should take into account not only the potential amount of the bioenergy yield but also the LUC emissions, and the associated loss of future potential change in the carbon uptake. The dependency of the land carbon uptake on LUC is strong in the SSP5-3.4-OS scenario, but it also affects other Shared Socioeconomic Pathway (SSP) scenarios and should be taken into account by the IAM teams. Future studies should further investigate the trade-offs between the carbon gains from the bioenergy yield and losses from the reduced <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake where BECCS is applied.</p>https://esd.copernicus.org/articles/13/779/2022/esd-13-779-2022.pdf |
spellingShingle | I. Melnikova I. Melnikova O. Boucher P. Cadule K. Tanaka K. Tanaka T. Gasser T. Hajima Y. Quilcaille H. Shiogama R. Séférian K. Tachiiri K. Tachiiri N. Vuichard T. Yokohata P. Ciais Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios Earth System Dynamics |
title | Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios |
title_full | Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios |
title_fullStr | Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios |
title_full_unstemmed | Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios |
title_short | Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios |
title_sort | impact of bioenergy crop expansion on climate carbon cycle feedbacks in overshoot scenarios |
url | https://esd.copernicus.org/articles/13/779/2022/esd-13-779-2022.pdf |
work_keys_str_mv | AT imelnikova impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT imelnikova impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT oboucher impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT pcadule impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT ktanaka impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT ktanaka impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT tgasser impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT thajima impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT yquilcaille impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT hshiogama impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT rseferian impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT ktachiiri impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT ktachiiri impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT nvuichard impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT tyokohata impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios AT pciais impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios |