Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios

<p>Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative <span class="inline-formula">CO<sub>2</sub></span> emissions. This bioenergy with CCS (BECCS) technol...

Full description

Bibliographic Details
Main Authors: I. Melnikova, O. Boucher, P. Cadule, K. Tanaka, T. Gasser, T. Hajima, Y. Quilcaille, H. Shiogama, R. Séférian, K. Tachiiri, N. Vuichard, T. Yokohata, P. Ciais
Format: Article
Language:English
Published: Copernicus Publications 2022-04-01
Series:Earth System Dynamics
Online Access:https://esd.copernicus.org/articles/13/779/2022/esd-13-779-2022.pdf
_version_ 1818059693773291520
author I. Melnikova
I. Melnikova
O. Boucher
P. Cadule
K. Tanaka
K. Tanaka
T. Gasser
T. Hajima
Y. Quilcaille
H. Shiogama
R. Séférian
K. Tachiiri
K. Tachiiri
N. Vuichard
T. Yokohata
P. Ciais
author_facet I. Melnikova
I. Melnikova
O. Boucher
P. Cadule
K. Tanaka
K. Tanaka
T. Gasser
T. Hajima
Y. Quilcaille
H. Shiogama
R. Séférian
K. Tachiiri
K. Tachiiri
N. Vuichard
T. Yokohata
P. Ciais
author_sort I. Melnikova
collection DOAJ
description <p>Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative <span class="inline-formula">CO<sub>2</sub></span> emissions. This bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth system models (ESMs) to explore the consequences of large-scale BECCS deployment on the climate–carbon cycle feedbacks under the CMIP6 SSP5-3.4-OS overshoot scenario keeping in mind that all these models use generic crop vegetation to simulate BECCS. First, we evaluate the land cover representation by ESMs and highlight the inconsistencies that emerge during translation of the data from integrated assessment models (IAMs) that are used to develop the scenario. Second, we evaluate the land-use change (LUC) emissions of ESMs against bookkeeping models. Finally, we show that an extensive cropland expansion for BECCS causes ecosystem carbon loss that drives the acceleration of carbon turnover and affects the <span class="inline-formula">CO<sub>2</sub></span> fertilization effect- and climate-change-driven land carbon uptake. Over the 2000–2100 period, the LUC for BECCS leads to an offset of the <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake by 12.2 % and amplifies the climate-change-driven carbon loss by 14.6 %. A human choice on land area allocation for energy crops should take into account not only the potential amount of the bioenergy yield but also the LUC emissions, and the associated loss of future potential change in the carbon uptake. The dependency of the land carbon uptake on LUC is strong in the SSP5-3.4-OS scenario, but it also affects other Shared Socioeconomic Pathway (SSP) scenarios and should be taken into account by the IAM teams. Future studies should further investigate the trade-offs between the carbon gains from the bioenergy yield and losses from the reduced <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake where BECCS is applied.</p>
first_indexed 2024-12-10T13:20:35Z
format Article
id doaj.art-45eb1924d8394aa0a05ef0f1f1c627b7
institution Directory Open Access Journal
issn 2190-4979
2190-4987
language English
last_indexed 2024-12-10T13:20:35Z
publishDate 2022-04-01
publisher Copernicus Publications
record_format Article
series Earth System Dynamics
spelling doaj.art-45eb1924d8394aa0a05ef0f1f1c627b72022-12-22T01:47:21ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872022-04-011377979410.5194/esd-13-779-2022Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenariosI. Melnikova0I. Melnikova1O. Boucher2P. Cadule3K. Tanaka4K. Tanaka5T. Gasser6T. Hajima7Y. Quilcaille8H. Shiogama9R. Séférian10K. Tachiiri11K. Tachiiri12N. Vuichard13T. Yokohata14P. Ciais15Institut Pierre-Simon Laplace (IPSL), Sorbonne Université/CNRS, Paris, FranceLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, FranceInstitut Pierre-Simon Laplace (IPSL), Sorbonne Université/CNRS, Paris, FranceInstitut Pierre-Simon Laplace (IPSL), Sorbonne Université/CNRS, Paris, FranceLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, FranceEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanInternational Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaResearch Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, JapanInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, SwitzerlandEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanResearch Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, JapanLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, FranceEarth System Division, National Institute for Environmental Studies (NIES), Tsukuba, JapanLaboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA/CNRS/UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France<p>Stringent mitigation pathways frame the deployment of second-generation bioenergy crops combined with carbon capture and storage (CCS) to generate negative <span class="inline-formula">CO<sub>2</sub></span> emissions. This bioenergy with CCS (BECCS) technology facilitates the achievement of the long-term temperature goal of the Paris Agreement. Here, we use five state-of-the-art Earth system models (ESMs) to explore the consequences of large-scale BECCS deployment on the climate–carbon cycle feedbacks under the CMIP6 SSP5-3.4-OS overshoot scenario keeping in mind that all these models use generic crop vegetation to simulate BECCS. First, we evaluate the land cover representation by ESMs and highlight the inconsistencies that emerge during translation of the data from integrated assessment models (IAMs) that are used to develop the scenario. Second, we evaluate the land-use change (LUC) emissions of ESMs against bookkeeping models. Finally, we show that an extensive cropland expansion for BECCS causes ecosystem carbon loss that drives the acceleration of carbon turnover and affects the <span class="inline-formula">CO<sub>2</sub></span> fertilization effect- and climate-change-driven land carbon uptake. Over the 2000–2100 period, the LUC for BECCS leads to an offset of the <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake by 12.2 % and amplifies the climate-change-driven carbon loss by 14.6 %. A human choice on land area allocation for energy crops should take into account not only the potential amount of the bioenergy yield but also the LUC emissions, and the associated loss of future potential change in the carbon uptake. The dependency of the land carbon uptake on LUC is strong in the SSP5-3.4-OS scenario, but it also affects other Shared Socioeconomic Pathway (SSP) scenarios and should be taken into account by the IAM teams. Future studies should further investigate the trade-offs between the carbon gains from the bioenergy yield and losses from the reduced <span class="inline-formula">CO<sub>2</sub></span> fertilization effect-driven carbon uptake where BECCS is applied.</p>https://esd.copernicus.org/articles/13/779/2022/esd-13-779-2022.pdf
spellingShingle I. Melnikova
I. Melnikova
O. Boucher
P. Cadule
K. Tanaka
K. Tanaka
T. Gasser
T. Hajima
Y. Quilcaille
H. Shiogama
R. Séférian
K. Tachiiri
K. Tachiiri
N. Vuichard
T. Yokohata
P. Ciais
Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
Earth System Dynamics
title Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
title_full Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
title_fullStr Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
title_full_unstemmed Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
title_short Impact of bioenergy crop expansion on climate–carbon cycle feedbacks in overshoot scenarios
title_sort impact of bioenergy crop expansion on climate carbon cycle feedbacks in overshoot scenarios
url https://esd.copernicus.org/articles/13/779/2022/esd-13-779-2022.pdf
work_keys_str_mv AT imelnikova impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT imelnikova impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT oboucher impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT pcadule impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT ktanaka impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT ktanaka impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT tgasser impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT thajima impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT yquilcaille impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT hshiogama impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT rseferian impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT ktachiiri impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT ktachiiri impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT nvuichard impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT tyokohata impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios
AT pciais impactofbioenergycropexpansiononclimatecarboncyclefeedbacksinovershootscenarios