Solar Radiation Climatology in Camagüey, Cuba (1981–2016)

The transition to renewable energies is an unavoidable step to guarantee a peaceful and sustainable future for humankind. Although solar radiation is one of the main sources of renewable energy, there are broad regions of the planet where it has not been characterized appropriately to provide the ne...

Full description

Bibliographic Details
Main Authors: Juan Carlos Antuña-Sánchez, René Estevan, Roberto Román, Juan Carlos Antuña-Marrero, Victoria E. Cachorro, Albeth Rodríguez Vega, Ángel M. de Frutos
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/2/169
_version_ 1797415755598266368
author Juan Carlos Antuña-Sánchez
René Estevan
Roberto Román
Juan Carlos Antuña-Marrero
Victoria E. Cachorro
Albeth Rodríguez Vega
Ángel M. de Frutos
author_facet Juan Carlos Antuña-Sánchez
René Estevan
Roberto Román
Juan Carlos Antuña-Marrero
Victoria E. Cachorro
Albeth Rodríguez Vega
Ángel M. de Frutos
author_sort Juan Carlos Antuña-Sánchez
collection DOAJ
description The transition to renewable energies is an unavoidable step to guarantee a peaceful and sustainable future for humankind. Although solar radiation is one of the main sources of renewable energy, there are broad regions of the planet where it has not been characterized appropriately to provide the necessary information for regional and local planning and design of the different solar powered systems. The Caribbean, and Cuba in particular, lacked until very recently at least one long-term series of surface solar radiation measurements. Here we present the first long-term records of solar radiation for this region. Solar radiation measurements manually conducted and recorded on paper were rescued, reprocessed and quality controlled to develop the solar radiation climatology at the Actinometrical Station of Camagüey, in Cuba (21.422<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>N; 77.850<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>W; 122 m a.s.l.) for the period 1981–2016. The diurnal cycle based on the average hourly values of the global, direct and diffuse horizontal variables for the entire period have been determined and analyzed showing the dependence on solar zenith angle (SZA) and clouds. The annual cycle of global solar component given by the mean monthly daily values presents two maxima, one in April and another one in July with values of 5.06 and 4.91 kWh m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, respectively (18.23 and 17.67 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> per day for insolation), and the minimum in December (3.15 kWh m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> or 11.33 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>). The maxima are governed by the direct solar components and are modulated by cloudiness. Both, diurnal and annual cycles of the diffuse solar component show a smoothed bell shaped behavior. In general solar radiation at this station presents a strong influence of clouds, with little seasonal variation but with higher values during the rainy season. Daily global radiation annual averages showed its maximum value in the year 1983, with 17.45 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> explained by very low cloudiness this year, and the minimum value was reported in 2009 with a value of 12.43 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> that could not explained by the cloud coverage or the aerosols optical depths registered that year. The effects of the 1982 El Chichón and 1991 Mount Pinatubo volcanic eruptions on the solar radiation variables at Camagüey are also shown and discussed. The results achieved in this study shown the characteristics of solar radiation in this area and their potential for solar power applications.
first_indexed 2024-03-09T05:54:10Z
format Article
id doaj.art-45f0598bc52246f69c592c57083d2ecb
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-09T05:54:10Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-45f0598bc52246f69c592c57083d2ecb2023-12-03T12:14:40ZengMDPI AGRemote Sensing2072-42922021-01-0113216910.3390/rs13020169Solar Radiation Climatology in Camagüey, Cuba (1981–2016)Juan Carlos Antuña-Sánchez0René Estevan1Roberto Román2Juan Carlos Antuña-Marrero3Victoria E. Cachorro4Albeth Rodríguez Vega5Ángel M. de Frutos6Atmospheric Optics Group (GOA), Valladolid University, 47011 Valladolid, SpainGeophysical Institute of Peru, 15012 Lima, PeruAtmospheric Optics Group (GOA), Valladolid University, 47011 Valladolid, SpainAtmospheric Optics Group (GOA), Valladolid University, 47011 Valladolid, SpainAtmospheric Optics Group (GOA), Valladolid University, 47011 Valladolid, SpainAtmospheric Optics Group of Camagüey, Meteorological Institute of Cuba, 70100 Camagüey, CubaAtmospheric Optics Group (GOA), Valladolid University, 47011 Valladolid, SpainThe transition to renewable energies is an unavoidable step to guarantee a peaceful and sustainable future for humankind. Although solar radiation is one of the main sources of renewable energy, there are broad regions of the planet where it has not been characterized appropriately to provide the necessary information for regional and local planning and design of the different solar powered systems. The Caribbean, and Cuba in particular, lacked until very recently at least one long-term series of surface solar radiation measurements. Here we present the first long-term records of solar radiation for this region. Solar radiation measurements manually conducted and recorded on paper were rescued, reprocessed and quality controlled to develop the solar radiation climatology at the Actinometrical Station of Camagüey, in Cuba (21.422<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>N; 77.850<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mo>°</mo></msup></semantics></math></inline-formula>W; 122 m a.s.l.) for the period 1981–2016. The diurnal cycle based on the average hourly values of the global, direct and diffuse horizontal variables for the entire period have been determined and analyzed showing the dependence on solar zenith angle (SZA) and clouds. The annual cycle of global solar component given by the mean monthly daily values presents two maxima, one in April and another one in July with values of 5.06 and 4.91 kWh m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, respectively (18.23 and 17.67 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> per day for insolation), and the minimum in December (3.15 kWh m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> or 11.33 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>). The maxima are governed by the direct solar components and are modulated by cloudiness. Both, diurnal and annual cycles of the diffuse solar component show a smoothed bell shaped behavior. In general solar radiation at this station presents a strong influence of clouds, with little seasonal variation but with higher values during the rainy season. Daily global radiation annual averages showed its maximum value in the year 1983, with 17.45 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> explained by very low cloudiness this year, and the minimum value was reported in 2009 with a value of 12.43 MJ m<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> that could not explained by the cloud coverage or the aerosols optical depths registered that year. The effects of the 1982 El Chichón and 1991 Mount Pinatubo volcanic eruptions on the solar radiation variables at Camagüey are also shown and discussed. The results achieved in this study shown the characteristics of solar radiation in this area and their potential for solar power applications.https://www.mdpi.com/2072-4292/13/2/169solar radiationinsolationcloud covercubaclimatologydiffuse and direct radiation
spellingShingle Juan Carlos Antuña-Sánchez
René Estevan
Roberto Román
Juan Carlos Antuña-Marrero
Victoria E. Cachorro
Albeth Rodríguez Vega
Ángel M. de Frutos
Solar Radiation Climatology in Camagüey, Cuba (1981–2016)
Remote Sensing
solar radiation
insolation
cloud cover
cuba
climatology
diffuse and direct radiation
title Solar Radiation Climatology in Camagüey, Cuba (1981–2016)
title_full Solar Radiation Climatology in Camagüey, Cuba (1981–2016)
title_fullStr Solar Radiation Climatology in Camagüey, Cuba (1981–2016)
title_full_unstemmed Solar Radiation Climatology in Camagüey, Cuba (1981–2016)
title_short Solar Radiation Climatology in Camagüey, Cuba (1981–2016)
title_sort solar radiation climatology in camaguey cuba 1981 2016
topic solar radiation
insolation
cloud cover
cuba
climatology
diffuse and direct radiation
url https://www.mdpi.com/2072-4292/13/2/169
work_keys_str_mv AT juancarlosantunasanchez solarradiationclimatologyincamagueycuba19812016
AT reneestevan solarradiationclimatologyincamagueycuba19812016
AT robertoroman solarradiationclimatologyincamagueycuba19812016
AT juancarlosantunamarrero solarradiationclimatologyincamagueycuba19812016
AT victoriaecachorro solarradiationclimatologyincamagueycuba19812016
AT albethrodriguezvega solarradiationclimatologyincamagueycuba19812016
AT angelmdefrutos solarradiationclimatologyincamagueycuba19812016