Green Mining Takes Place at the Power Plant

The number of large coal power plants, characterized by pithead plants, is increasing rapidly in major coal mining countries around the world. Overburden movement caused by coal mining and greenhouse gas emissions caused by coal thermal power generation are intertwined, and have become important cha...

Full description

Bibliographic Details
Main Authors: Zhiyi Zhang, Hao Liu, Hui Su, Qiang Zeng
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/12/7/839
Description
Summary:The number of large coal power plants, characterized by pithead plants, is increasing rapidly in major coal mining countries around the world. Overburden movement caused by coal mining and greenhouse gas emissions caused by coal thermal power generation are intertwined, and have become important challenges for mine ecological environment protection at present and in the future. In order to provide more options for green mining in large coal power plants, a large coal power base in northwest China was taken as the researching background in this paper, and a green mining model considering the above two aspects of ecological environment damages was proposed; that is, the carbon dioxide greenhouse gas produced by coal-fired power plants can be geologically trapped in goaf, whose overburden stability is controlled by backfill strips made of solid mine waste. In order to explore the feasibility of this model, the bearing strength of the filled gray brick consisting mainly of aeolian sand and fly ash under different curing methods was firstly studied, and it was discovered that the strength of the gray brick significantly improved after carbonization curing. After that, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to compare the mineral composition and its spatial morphology in gray brick before and after carbonization, and it is believed that the formation of dense acicular calcium carbonate after carbonization curing was the fundamental reason for the improvement of its bearing strength. Finally, a series of stope numerical models were established with UDEC software to analyze the surface settlement, crack propagation height and air tightness of the overlying strata, respectively, when goaf was supported by the backfilling strips with carbonized gray brick. The research results of this paper showed that the stability of overlying strata in goaf can be effectively controlled by adjusting the curing methods, width and spacing of the filled gray brick, so as to facilitate the following geological sequestration of carbon dioxide greenhouse gas in goaf. Consequently, the ecological environment damages caused by coal mining and utilization in a large coal power base can be resolved as a whole, and the purpose of green mining can be achieved as desired.
ISSN:2075-163X