Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds
Hybrid microparticles based on an iron core and an amphiphilic polymeric shell have been prepared to respond simultaneously to magnetic and ultrasonic fields and variation in the surrounding pH to trigger and modulate the delivery of doxorubicin. The microparticles have been developed in four steps:...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/12/4324 |
_version_ | 1797564284999303168 |
---|---|
author | Sergei S. Vlasov Pavel S. Postnikov Mikhail V. Belousov Sergei V. Krivoshchekov Mekhman S. Yusubov Artem M. Guryev Antonio Di Martino |
author_facet | Sergei S. Vlasov Pavel S. Postnikov Mikhail V. Belousov Sergei V. Krivoshchekov Mekhman S. Yusubov Artem M. Guryev Antonio Di Martino |
author_sort | Sergei S. Vlasov |
collection | DOAJ |
description | Hybrid microparticles based on an iron core and an amphiphilic polymeric shell have been prepared to respond simultaneously to magnetic and ultrasonic fields and variation in the surrounding pH to trigger and modulate the delivery of doxorubicin. The microparticles have been developed in four steps: (i) synthesis of the iron core; (ii) surface modification of the core; (iii) conjugation with the amphiphilic poly(lactic acid)-grafted chitosan; and (iv) doxorubicin loading. The particles demonstrate spherical shape, a size in the range of 1–3 µm and surface charge that is tuneable by changing the pH of the environment. The microparticles demonstrate good stability in simulated physiological solutions and are able to hold up to 400 µg of doxorubicin per mg of dried particles. The response to ultrasound and the changes in the shell structure during exposure to different pH levels allows the control of the burst intensity and release rate of the payload. Additionally, the magnetic response of the iron core is preserved despite the polymer coat. In vitro cytotoxicity tests performed on fibroblast NIH/3T3 demonstrate a reduction in the cell viability after administration of doxorubicin-loaded microparticles compared to the administration of free doxorubicin. The application of ultrasound causes a burst in the release of the doxorubicin from the carrier, causing a decrease in cell viability. The microparticles demonstrate in vitro cytocompatibility and hemocompatibility at concentrations of up to 50 and 60 µg/mL, respectively. |
first_indexed | 2024-03-10T18:55:06Z |
format | Article |
id | doaj.art-46001648fac14dd098aac02c4a440be3 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-10T18:55:06Z |
publishDate | 2020-06-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-46001648fac14dd098aac02c4a440be32023-11-20T04:47:43ZengMDPI AGApplied Sciences2076-34172020-06-011012432410.3390/app10124324Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive CompoundsSergei S. Vlasov0Pavel S. Postnikov1Mikhail V. Belousov2Sergei V. Krivoshchekov3Mekhman S. Yusubov4Artem M. Guryev5Antonio Di Martino6Central Scientific Research Laboratory, Siberian State Medical University (SibSMU), 634050 Tomsk, RussiaResearch School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, RussiaResearch School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, RussiaDepartment of Pharmaceutical Analysis, Siberian State Medical University (SibSMU), 634050 Tomsk, RussiaCentral Scientific Research Laboratory, Siberian State Medical University (SibSMU), 634050 Tomsk, RussiaCentral Scientific Research Laboratory, Siberian State Medical University (SibSMU), 634050 Tomsk, RussiaResearch School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, RussiaHybrid microparticles based on an iron core and an amphiphilic polymeric shell have been prepared to respond simultaneously to magnetic and ultrasonic fields and variation in the surrounding pH to trigger and modulate the delivery of doxorubicin. The microparticles have been developed in four steps: (i) synthesis of the iron core; (ii) surface modification of the core; (iii) conjugation with the amphiphilic poly(lactic acid)-grafted chitosan; and (iv) doxorubicin loading. The particles demonstrate spherical shape, a size in the range of 1–3 µm and surface charge that is tuneable by changing the pH of the environment. The microparticles demonstrate good stability in simulated physiological solutions and are able to hold up to 400 µg of doxorubicin per mg of dried particles. The response to ultrasound and the changes in the shell structure during exposure to different pH levels allows the control of the burst intensity and release rate of the payload. Additionally, the magnetic response of the iron core is preserved despite the polymer coat. In vitro cytotoxicity tests performed on fibroblast NIH/3T3 demonstrate a reduction in the cell viability after administration of doxorubicin-loaded microparticles compared to the administration of free doxorubicin. The application of ultrasound causes a burst in the release of the doxorubicin from the carrier, causing a decrease in cell viability. The microparticles demonstrate in vitro cytocompatibility and hemocompatibility at concentrations of up to 50 and 60 µg/mL, respectively.https://www.mdpi.com/2076-3417/10/12/4324core–shell microparticlesultrasoundamphiphilic polymersmagnetic microparticlesdoxorubicin |
spellingShingle | Sergei S. Vlasov Pavel S. Postnikov Mikhail V. Belousov Sergei V. Krivoshchekov Mekhman S. Yusubov Artem M. Guryev Antonio Di Martino Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds Applied Sciences core–shell microparticles ultrasound amphiphilic polymers magnetic microparticles doxorubicin |
title | Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds |
title_full | Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds |
title_fullStr | Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds |
title_full_unstemmed | Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds |
title_short | Multiresponsive Hybrid Microparticles for Stimuli-Responsive Delivery of Bioactive Compounds |
title_sort | multiresponsive hybrid microparticles for stimuli responsive delivery of bioactive compounds |
topic | core–shell microparticles ultrasound amphiphilic polymers magnetic microparticles doxorubicin |
url | https://www.mdpi.com/2076-3417/10/12/4324 |
work_keys_str_mv | AT sergeisvlasov multiresponsivehybridmicroparticlesforstimuliresponsivedeliveryofbioactivecompounds AT pavelspostnikov multiresponsivehybridmicroparticlesforstimuliresponsivedeliveryofbioactivecompounds AT mikhailvbelousov multiresponsivehybridmicroparticlesforstimuliresponsivedeliveryofbioactivecompounds AT sergeivkrivoshchekov multiresponsivehybridmicroparticlesforstimuliresponsivedeliveryofbioactivecompounds AT mekhmansyusubov multiresponsivehybridmicroparticlesforstimuliresponsivedeliveryofbioactivecompounds AT artemmguryev multiresponsivehybridmicroparticlesforstimuliresponsivedeliveryofbioactivecompounds AT antoniodimartino multiresponsivehybridmicroparticlesforstimuliresponsivedeliveryofbioactivecompounds |