Asymptotics for the greatest zeros of solutions of a particular O.D.E.
<span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros o...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
1994-05-01
|
Series: | Le Matematiche |
Subjects: | |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/515 |
_version_ | 1818512037106417664 |
---|---|
author | Silvia Noschese Paolo Emilio Ricci |
author_facet | Silvia Noschese Paolo Emilio Ricci |
author_sort | Silvia Noschese |
collection | DOAJ |
description | <span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros of functions by means of the knowledge of an asymptotic representation. From the classical tools we deduce information about the asymptotics of the greatest zeros of a class of solutions of a particular ODE, including the classical Hermite polynomials.</span></span> |
first_indexed | 2024-12-10T23:41:03Z |
format | Article |
id | doaj.art-462063d6a7c241a590f8ad5b7db484d4 |
institution | Directory Open Access Journal |
issn | 0373-3505 2037-5298 |
language | English |
last_indexed | 2024-12-10T23:41:03Z |
publishDate | 1994-05-01 |
publisher | Università degli Studi di Catania |
record_format | Article |
series | Le Matematiche |
spelling | doaj.art-462063d6a7c241a590f8ad5b7db484d42022-12-22T01:29:02ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981994-05-01491107121483Asymptotics for the greatest zeros of solutions of a particular O.D.E.Silvia NoschesePaolo Emilio Ricci<span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros of functions by means of the knowledge of an asymptotic representation. From the classical tools we deduce information about the asymptotics of the greatest zeros of a class of solutions of a particular ODE, including the classical Hermite polynomials.</span></span>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/515Ordinary differential equationsOrthogonal polynomialsZero-distributionAsymptotics |
spellingShingle | Silvia Noschese Paolo Emilio Ricci Asymptotics for the greatest zeros of solutions of a particular O.D.E. Le Matematiche Ordinary differential equations Orthogonal polynomials Zero-distribution Asymptotics |
title | Asymptotics for the greatest zeros of solutions of a particular O.D.E. |
title_full | Asymptotics for the greatest zeros of solutions of a particular O.D.E. |
title_fullStr | Asymptotics for the greatest zeros of solutions of a particular O.D.E. |
title_full_unstemmed | Asymptotics for the greatest zeros of solutions of a particular O.D.E. |
title_short | Asymptotics for the greatest zeros of solutions of a particular O.D.E. |
title_sort | asymptotics for the greatest zeros of solutions of a particular o d e |
topic | Ordinary differential equations Orthogonal polynomials Zero-distribution Asymptotics |
url | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/515 |
work_keys_str_mv | AT silvianoschese asymptoticsforthegreatestzerosofsolutionsofaparticularode AT paoloemilioricci asymptoticsforthegreatestzerosofsolutionsofaparticularode |