Asymptotics for the greatest zeros of solutions of a particular O.D.E.

<span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros o...

Full description

Bibliographic Details
Main Authors: Silvia Noschese, Paolo Emilio Ricci
Format: Article
Language:English
Published: Università degli Studi di Catania 1994-05-01
Series:Le Matematiche
Subjects:
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/515
_version_ 1818512037106417664
author Silvia Noschese
Paolo Emilio Ricci
author_facet Silvia Noschese
Paolo Emilio Ricci
author_sort Silvia Noschese
collection DOAJ
description <span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros of functions by means of the knowledge of an asymptotic representation. From the classical tools we deduce information about the asymptotics of the greatest zeros of a class of solutions of a particular ODE, including the classical Hermite polynomials.</span></span>
first_indexed 2024-12-10T23:41:03Z
format Article
id doaj.art-462063d6a7c241a590f8ad5b7db484d4
institution Directory Open Access Journal
issn 0373-3505
2037-5298
language English
last_indexed 2024-12-10T23:41:03Z
publishDate 1994-05-01
publisher Università degli Studi di Catania
record_format Article
series Le Matematiche
spelling doaj.art-462063d6a7c241a590f8ad5b7db484d42022-12-22T01:29:02ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981994-05-01491107121483Asymptotics for the greatest zeros of solutions of a particular O.D.E.Silvia NoschesePaolo Emilio Ricci<span style="font-family: DejaVu Sans,sans-serif;"><span style="font-style: normal;">This paper deals with the Liouville-Stekeloff method for approximating solutions of homogeneous linear ODE and a general result due to Tricomi which provides estimates for the zeros of functions by means of the knowledge of an asymptotic representation. From the classical tools we deduce information about the asymptotics of the greatest zeros of a class of solutions of a particular ODE, including the classical Hermite polynomials.</span></span>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/515Ordinary differential equationsOrthogonal polynomialsZero-distributionAsymptotics
spellingShingle Silvia Noschese
Paolo Emilio Ricci
Asymptotics for the greatest zeros of solutions of a particular O.D.E.
Le Matematiche
Ordinary differential equations
Orthogonal polynomials
Zero-distribution
Asymptotics
title Asymptotics for the greatest zeros of solutions of a particular O.D.E.
title_full Asymptotics for the greatest zeros of solutions of a particular O.D.E.
title_fullStr Asymptotics for the greatest zeros of solutions of a particular O.D.E.
title_full_unstemmed Asymptotics for the greatest zeros of solutions of a particular O.D.E.
title_short Asymptotics for the greatest zeros of solutions of a particular O.D.E.
title_sort asymptotics for the greatest zeros of solutions of a particular o d e
topic Ordinary differential equations
Orthogonal polynomials
Zero-distribution
Asymptotics
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/515
work_keys_str_mv AT silvianoschese asymptoticsforthegreatestzerosofsolutionsofaparticularode
AT paoloemilioricci asymptoticsforthegreatestzerosofsolutionsofaparticularode