Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions

A new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo&...

Full description

Bibliographic Details
Main Authors: Jie Zhai, Rekha Srivastava, Jin-Lin Liu
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/17/3073
Description
Summary:A new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> is introduced. The estimates for the general Taylor–Maclaurin coefficients of the functions in the introduced subclass are obtained by making use of Faber polynomial expansions. In particular, several previous results are generalized.
ISSN:2227-7390