Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
A new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo&...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/17/3073 |
_version_ | 1797494381069991936 |
---|---|
author | Jie Zhai Rekha Srivastava Jin-Lin Liu |
author_facet | Jie Zhai Rekha Srivastava Jin-Lin Liu |
author_sort | Jie Zhai |
collection | DOAJ |
description | A new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> is introduced. The estimates for the general Taylor–Maclaurin coefficients of the functions in the introduced subclass are obtained by making use of Faber polynomial expansions. In particular, several previous results are generalized. |
first_indexed | 2024-03-10T01:33:27Z |
format | Article |
id | doaj.art-463142262bec4ce387dbe01bbb8f1922 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T01:33:27Z |
publishDate | 2022-08-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-463142262bec4ce387dbe01bbb8f19222023-11-23T13:37:53ZengMDPI AGMathematics2227-73902022-08-011017307310.3390/math10173073Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric FunctionsJie Zhai0Rekha Srivastava1Jin-Lin Liu2Department of Mathematics, Yangzhou University, Yangzhou 225002, ChinaDepartment of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics, Yangzhou University, Yangzhou 225002, ChinaA new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> is introduced. The estimates for the general Taylor–Maclaurin coefficients of the functions in the introduced subclass are obtained by making use of Faber polynomial expansions. In particular, several previous results are generalized.https://www.mdpi.com/2227-7390/10/17/3073analytic functionbi-univalent functionsubordinationschwarz functionbi-close-to-convexgeneralized hypergeometric function |
spellingShingle | Jie Zhai Rekha Srivastava Jin-Lin Liu Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions Mathematics analytic function bi-univalent function subordination schwarz function bi-close-to-convex generalized hypergeometric function |
title | Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions |
title_full | Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions |
title_fullStr | Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions |
title_full_unstemmed | Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions |
title_short | Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions |
title_sort | faber polynomial coefficient estimates of bi close to convex functions associated with generalized hypergeometric functions |
topic | analytic function bi-univalent function subordination schwarz function bi-close-to-convex generalized hypergeometric function |
url | https://www.mdpi.com/2227-7390/10/17/3073 |
work_keys_str_mv | AT jiezhai faberpolynomialcoefficientestimatesofbiclosetoconvexfunctionsassociatedwithgeneralizedhypergeometricfunctions AT rekhasrivastava faberpolynomialcoefficientestimatesofbiclosetoconvexfunctionsassociatedwithgeneralizedhypergeometricfunctions AT jinlinliu faberpolynomialcoefficientestimatesofbiclosetoconvexfunctionsassociatedwithgeneralizedhypergeometricfunctions |