Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions

A new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo&...

Full description

Bibliographic Details
Main Authors: Jie Zhai, Rekha Srivastava, Jin-Lin Liu
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/17/3073
_version_ 1797494381069991936
author Jie Zhai
Rekha Srivastava
Jin-Lin Liu
author_facet Jie Zhai
Rekha Srivastava
Jin-Lin Liu
author_sort Jie Zhai
collection DOAJ
description A new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> is introduced. The estimates for the general Taylor–Maclaurin coefficients of the functions in the introduced subclass are obtained by making use of Faber polynomial expansions. In particular, several previous results are generalized.
first_indexed 2024-03-10T01:33:27Z
format Article
id doaj.art-463142262bec4ce387dbe01bbb8f1922
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T01:33:27Z
publishDate 2022-08-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-463142262bec4ce387dbe01bbb8f19222023-11-23T13:37:53ZengMDPI AGMathematics2227-73902022-08-011017307310.3390/math10173073Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric FunctionsJie Zhai0Rekha Srivastava1Jin-Lin Liu2Department of Mathematics, Yangzhou University, Yangzhou 225002, ChinaDepartment of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics, Yangzhou University, Yangzhou 225002, ChinaA new subclass of bi-close-to-convex functions associated with the generalized hypergeometric functions defined in ∆<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>=</mo><mo>{</mo><mi>z</mi><mo>∈</mo><mi mathvariant="double-struck">C</mi><mo>:</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo><</mo><mn>1</mn><mo>}</mo></mrow></semantics></math></inline-formula> is introduced. The estimates for the general Taylor–Maclaurin coefficients of the functions in the introduced subclass are obtained by making use of Faber polynomial expansions. In particular, several previous results are generalized.https://www.mdpi.com/2227-7390/10/17/3073analytic functionbi-univalent functionsubordinationschwarz functionbi-close-to-convexgeneralized hypergeometric function
spellingShingle Jie Zhai
Rekha Srivastava
Jin-Lin Liu
Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
Mathematics
analytic function
bi-univalent function
subordination
schwarz function
bi-close-to-convex
generalized hypergeometric function
title Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
title_full Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
title_fullStr Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
title_full_unstemmed Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
title_short Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions
title_sort faber polynomial coefficient estimates of bi close to convex functions associated with generalized hypergeometric functions
topic analytic function
bi-univalent function
subordination
schwarz function
bi-close-to-convex
generalized hypergeometric function
url https://www.mdpi.com/2227-7390/10/17/3073
work_keys_str_mv AT jiezhai faberpolynomialcoefficientestimatesofbiclosetoconvexfunctionsassociatedwithgeneralizedhypergeometricfunctions
AT rekhasrivastava faberpolynomialcoefficientestimatesofbiclosetoconvexfunctionsassociatedwithgeneralizedhypergeometricfunctions
AT jinlinliu faberpolynomialcoefficientestimatesofbiclosetoconvexfunctionsassociatedwithgeneralizedhypergeometricfunctions