New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices

The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the ba...

Full description

Bibliographic Details
Main Authors: Andre F. S. Guedes, Vilmar P. Guedes, Simone Tartari, Mônica L. Souza, Idaulo J. Cunha
Format: Article
Language:English
Published: International Institute of Informatics and Cybernetics 2015-04-01
Series:Journal of Systemics, Cybernetics and Informatics
Subjects:
Online Access:http://www.iiisci.org/Journal/CV$/sci/pdfs/SA525FZ15.pdf
Description
Summary:The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene), PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by Electrical Measurements and Scanning Electron Microscopy (SEM). In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by electrical Measurements has demonstrated that the PET/ITO/PEDOT/P3HT:PCBM Blend/PANI-X1 layer presents the characteristic curve of standard solar cell after spin-coating and electrodeposition. The Thin film obtained by electrodeposition of PANI-X1 on P3HT/PCBM Blend was prepared in perchloric acid solution. These flexible organic photovoltaic solar cells presented power conversion efficiency of 12%. The inclusion of the PANI-X1 layer reduced the effects of degradation these organic photovoltaic panels induced for solar irradiation. In Scanning Electron Microscopy (SEM) these studies reveal that the surface of PANI-X1 layers is strongly conditioned by the surface morphology of the dielectric.
ISSN:1690-4524