Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional Systems

This paper discusses the optimal control issue for elliptic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>×</mo><mi>k</mi></mrow></semantics>...

Full description

Bibliographic Details
Main Authors: Hassan M. Serag, Abd-Allah Hyder, Mahmoud El-Badawy, Areej A. Almoneef
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/10/559
_version_ 1797473204468449280
author Hassan M. Serag
Abd-Allah Hyder
Mahmoud El-Badawy
Areej A. Almoneef
author_facet Hassan M. Serag
Abd-Allah Hyder
Mahmoud El-Badawy
Areej A. Almoneef
author_sort Hassan M. Serag
collection DOAJ
description This paper discusses the optimal control issue for elliptic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>×</mo><mi>k</mi></mrow></semantics></math></inline-formula> cooperative fractional systems. The fractional operators are proposed in the Laplace sense. Because of the nonlocality of the Laplace fractional operators, we reformulate the issue as an extended issue on a semi-infinite cylinder in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The weak solution for these fractional systems is then proven to exist and be unique. Moreover, the existence and optimality conditions can be inferred as a consequence.
first_indexed 2024-03-09T20:11:31Z
format Article
id doaj.art-4645be9f458e48cf89f61793aef35b57
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T20:11:31Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-4645be9f458e48cf89f61793aef35b572023-11-24T00:11:35ZengMDPI AGFractal and Fractional2504-31102022-10-0161055910.3390/fractalfract6100559Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional SystemsHassan M. Serag0Abd-Allah Hyder1Mahmoud El-Badawy2Areej A. Almoneef3Department of Mathematics, Faculty of Sciences, Al-Azhar University, Cairo 71524, EgyptDepartment of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi ArabiaDepartment of Mathematics, Faculty of Sciences, Al-Azhar University, Cairo 71524, EgyptDepartment of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi ArabiaThis paper discusses the optimal control issue for elliptic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>×</mo><mi>k</mi></mrow></semantics></math></inline-formula> cooperative fractional systems. The fractional operators are proposed in the Laplace sense. Because of the nonlocality of the Laplace fractional operators, we reformulate the issue as an extended issue on a semi-infinite cylinder in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The weak solution for these fractional systems is then proven to exist and be unique. Moreover, the existence and optimality conditions can be inferred as a consequence.https://www.mdpi.com/2504-3110/6/10/559nonlocal operatorfractional laplace operatorweak solutionoptimality conditionscooperative systems
spellingShingle Hassan M. Serag
Abd-Allah Hyder
Mahmoud El-Badawy
Areej A. Almoneef
Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional Systems
Fractal and Fractional
nonlocal operator
fractional laplace operator
weak solution
optimality conditions
cooperative systems
title Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional Systems
title_full Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional Systems
title_fullStr Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional Systems
title_full_unstemmed Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional Systems
title_short Optimal Control for <i>k</i> × <i>k</i> Cooperative Fractional Systems
title_sort optimal control for i k i i k i cooperative fractional systems
topic nonlocal operator
fractional laplace operator
weak solution
optimality conditions
cooperative systems
url https://www.mdpi.com/2504-3110/6/10/559
work_keys_str_mv AT hassanmserag optimalcontrolforikiikicooperativefractionalsystems
AT abdallahhyder optimalcontrolforikiikicooperativefractionalsystems
AT mahmoudelbadawy optimalcontrolforikiikicooperativefractionalsystems
AT areejaalmoneef optimalcontrolforikiikicooperativefractionalsystems