VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

Abscisic acid (ABA) plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine), and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in pl...

Full description

Bibliographic Details
Main Authors: JIe Hao, Qian Ma, Lixia Hou, Fanggui Zhao, Liu Xin
Format: Article
Language:English
Published: Polish Botanical Society 2017-06-01
Series:Acta Societatis Botanicorum Poloniae
Subjects:
Online Access:https://pbsociety.org.pl/journals/index.php/asbp/article/view/6752
Description
Summary:Abscisic acid (ABA) plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine), and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box) in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.
ISSN:2083-9480