On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic Functions

Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of analytical function to obtain new criteria equivalent to the Riemann hypothesis. Later, the same theorem was applied to calculate certain infinite sums and study the properties...

Full description

Bibliographic Details
Main Author: Sergey Sekatskii
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/6/595
_version_ 1827738600562753536
author Sergey Sekatskii
author_facet Sergey Sekatskii
author_sort Sergey Sekatskii
collection DOAJ
description Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of analytical function to obtain new criteria equivalent to the Riemann hypothesis. Later, the same theorem was applied to calculate certain infinite sums and study the properties of zeroes of a few analytical functions. In this study, we apply this approach to elliptic functions of Jacobi and Weierstrass. Numerous sums over inverse powers of zeroes and poles are calculated, including some results for the Jacobi elliptic functions <i>sn</i>(<i>z</i>, <i>k</i>) and others understood as functions of the index <i>k</i>. The consideration of the case of the derivative of the Weierstrass rho-function, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mi>z</mi></msub><mo stretchy="false">(</mo><mi>z</mi><msub><mo>,</mo><mrow></mrow></msub><mi>τ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, leads to quite easy and transparent proof of numerous equalities between the sums over inverse powers of the lattice points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mi>n</mi><mi>τ</mi></mrow></semantics></math></inline-formula> and “demi-lattice” points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>n</mi><mi>τ</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo stretchy="false">)</mo><mi>τ</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo stretchy="false">)</mo><mi>τ</mi></mrow></semantics></math></inline-formula>. We also prove theorems showing that, in most cases, fundamental parallelograms contain exactly one simple zero for the first derivative <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mo>′</mo><mo stretchy="false">(</mo><mi>z</mi><mo>|</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> of the elliptic theta-function and the Weierstrass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>-function, and that far from the origin of coordinates such zeroes of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>-function tend to the positions of the simple poles of this function.
first_indexed 2024-03-11T02:46:39Z
format Article
id doaj.art-46540ff4dcfe49c5a0017b4e75de6ba1
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T02:46:39Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-46540ff4dcfe49c5a0017b4e75de6ba12023-11-18T09:17:14ZengMDPI AGAxioms2075-16802023-06-0112659510.3390/axioms12060595On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic FunctionsSergey Sekatskii0Laboratory of Biological Electron Microscopy, Institute of Physics, BSP 419, Ecole Polytechnique Fédérale de Lausanne and Department of Fundamental Biology, Faculty of Biology and Medicine, University of Lausanne, CH1015 Lausanne, SwitzerlandRecently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of analytical function to obtain new criteria equivalent to the Riemann hypothesis. Later, the same theorem was applied to calculate certain infinite sums and study the properties of zeroes of a few analytical functions. In this study, we apply this approach to elliptic functions of Jacobi and Weierstrass. Numerous sums over inverse powers of zeroes and poles are calculated, including some results for the Jacobi elliptic functions <i>sn</i>(<i>z</i>, <i>k</i>) and others understood as functions of the index <i>k</i>. The consideration of the case of the derivative of the Weierstrass rho-function, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>℘</mo><mi>z</mi></msub><mo stretchy="false">(</mo><mi>z</mi><msub><mo>,</mo><mrow></mrow></msub><mi>τ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>, leads to quite easy and transparent proof of numerous equalities between the sums over inverse powers of the lattice points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mi>n</mi><mi>τ</mi></mrow></semantics></math></inline-formula> and “demi-lattice” points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>n</mi><mi>τ</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo stretchy="false">)</mo><mi>τ</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo stretchy="false">)</mo><mi>τ</mi></mrow></semantics></math></inline-formula>. We also prove theorems showing that, in most cases, fundamental parallelograms contain exactly one simple zero for the first derivative <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>θ</mi><mn>1</mn></msub><mo>′</mo><mo stretchy="false">(</mo><mi>z</mi><mo>|</mo><mi>τ</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> of the elliptic theta-function and the Weierstrass <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>-function, and that far from the origin of coordinates such zeroes of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>-function tend to the positions of the simple poles of this function.https://www.mdpi.com/2075-1680/12/6/595generalized Littlewood theoremlogarithm of an analytical functionelliptic functionszeroes and poles of analytical functioninfinite sums
spellingShingle Sergey Sekatskii
On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic Functions
Axioms
generalized Littlewood theorem
logarithm of an analytical function
elliptic functions
zeroes and poles of analytical function
infinite sums
title On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic Functions
title_full On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic Functions
title_fullStr On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic Functions
title_full_unstemmed On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic Functions
title_short On the Applications of the Generalized Littlewood Theorem Concerning Integrals of the Logarithm of Analytical Functions to Elliptic Functions
title_sort on the applications of the generalized littlewood theorem concerning integrals of the logarithm of analytical functions to elliptic functions
topic generalized Littlewood theorem
logarithm of an analytical function
elliptic functions
zeroes and poles of analytical function
infinite sums
url https://www.mdpi.com/2075-1680/12/6/595
work_keys_str_mv AT sergeysekatskii ontheapplicationsofthegeneralizedlittlewoodtheoremconcerningintegralsofthelogarithmofanalyticalfunctionstoellipticfunctions