On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian

A new existence result is obtained for nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian by using the minimax methods.

Bibliographic Details
Main Authors: Daniel Pasca, Zhiyong Wang
Format: Article
Language:English
Published: University of Szeged 2016-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4990
_version_ 1797830570452975616
author Daniel Pasca
Zhiyong Wang
author_facet Daniel Pasca
Zhiyong Wang
author_sort Daniel Pasca
collection DOAJ
description A new existence result is obtained for nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian by using the minimax methods.
first_indexed 2024-04-09T13:38:11Z
format Article
id doaj.art-466dba275db643d1a99e1c16437b3c3c
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:38:11Z
publishDate 2016-11-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-466dba275db643d1a99e1c16437b3c3c2023-05-09T07:53:06ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752016-11-0120161061910.14232/ejqtde.2016.1.1064990On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-LaplacianDaniel Pasca0Zhiyong Wang1University of Oradea, Oradea, RomaniaNanjing University of Information Science & Technology, Nanjing, P.R. ChinaA new existence result is obtained for nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian by using the minimax methods.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4990periodic solutionshamiltonian systems with $(qp)$-laplaciancerami condition; saddle point theorem
spellingShingle Daniel Pasca
Zhiyong Wang
On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian
Electronic Journal of Qualitative Theory of Differential Equations
periodic solutions
hamiltonian systems with $(q
p)$-laplacian
cerami condition; saddle point theorem
title On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian
title_full On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian
title_fullStr On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian
title_full_unstemmed On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian
title_short On periodic solutions of nonautonomous second order Hamiltonian systems with $(q,p)$-Laplacian
title_sort on periodic solutions of nonautonomous second order hamiltonian systems with q p laplacian
topic periodic solutions
hamiltonian systems with $(q
p)$-laplacian
cerami condition; saddle point theorem
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4990
work_keys_str_mv AT danielpasca onperiodicsolutionsofnonautonomoussecondorderhamiltoniansystemswithqplaplacian
AT zhiyongwang onperiodicsolutionsofnonautonomoussecondorderhamiltoniansystemswithqplaplacian