Knowledge and Perception of the Use of AI and its Implementation in the Field of Radiology: Cross-Sectional Study

BackgroundArtificial Intelligence (AI) has been developing for decades, but in recent years its use in the field of health care has experienced an exponential increase. Currently, there is little doubt that these tools have transformed clinical practice. Therefore, it is impo...

Full description

Bibliographic Details
Main Authors: Queralt Miró Catalina, Joaquim Femenia, Aïna Fuster-Casanovas, Francesc X Marin-Gomez, Anna Escalé-Besa, Jordi Solé-Casals, Josep Vidal-Alaball
Format: Article
Language:English
Published: JMIR Publications 2023-10-01
Series:Journal of Medical Internet Research
Online Access:https://www.jmir.org/2023/1/e50728
Description
Summary:BackgroundArtificial Intelligence (AI) has been developing for decades, but in recent years its use in the field of health care has experienced an exponential increase. Currently, there is little doubt that these tools have transformed clinical practice. Therefore, it is important to know how the population perceives its implementation to be able to propose strategies for acceptance and implementation and to improve or prevent problems arising from future applications. ObjectiveThis study aims to describe the population’s perception and knowledge of the use of AI as a health support tool and its application to radiology through a validated questionnaire, in order to develop strategies aimed at increasing acceptance of AI use, reducing possible resistance to change and identifying possible sociodemographic factors related to perception and knowledge. MethodsA cross-sectional observational study was conducted using an anonymous and voluntarily validated questionnaire aimed at the entire population of Catalonia aged 18 years or older. The survey addresses 4 dimensions defined to describe users’ perception of the use of AI in radiology, (1) “distrust and accountability,” (2) “personal interaction,” (3) “efficiency,” and (4) “being informed,” all with questions in a Likert scale format. Results closer to 5 refer to a negative perception of the use of AI, while results closer to 1 express a positive perception. Univariate and bivariate analyses were performed to assess possible associations between the 4 dimensions and sociodemographic characteristics. ResultsA total of 379 users responded to the survey, with an average age of 43.9 (SD 17.52) years and 59.8% (n=226) of them identified as female. In addition, 89.8% (n=335) of respondents indicated that they understood the concept of AI. Of the 4 dimensions analyzed, “distrust and accountability” obtained a mean score of 3.37 (SD 0.53), “personal interaction” obtained a mean score of 4.37 (SD 0.60), “efficiency” obtained a mean score of 3.06 (SD 0.73) and “being informed” obtained a mean score of 3.67 (SD 0.57). In relation to the “distrust and accountability” dimension, women, people older than 65 years, the group with university studies, and the population that indicated not understanding the AI concept had significantly more distrust in the use of AI. On the dimension of “being informed,” it was observed that the group with university studies rated access to information more positively and those who indicated not understanding the concept of AI rated it more negatively. ConclusionsThe majority of the sample investigated reported being familiar with the concept of AI, with varying degrees of acceptance of its implementation in radiology. It is clear that the most conflictive dimension is “personal interaction,” whereas “efficiency” is where there is the greatest acceptance, being the dimension in which there are the best expectations for the implementation of AI in radiology.
ISSN:1438-8871