The influence of vegetation dynamics on anthropogenic climate change
In this study, vegetation–climate and vegetation–carbon cycle interactions during anthropogenic climate change are assessed by using the Earth System Model of the Max Planck Institute for Meteorology (MPI ESM) that includes vegetation dynamics and an interactive carbon cycle. We assume anthropogenic...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-11-01
|
Series: | Earth System Dynamics |
Online Access: | http://www.earth-syst-dynam.net/3/233/2012/esd-3-233-2012.pdf |
_version_ | 1819204997516099584 |
---|---|
author | U. Port V. Brovkin M. Claussen |
author_facet | U. Port V. Brovkin M. Claussen |
author_sort | U. Port |
collection | DOAJ |
description | In this study, vegetation–climate and vegetation–carbon cycle interactions during anthropogenic climate change are assessed by using the Earth System Model of the Max Planck Institute for Meteorology (MPI ESM) that includes vegetation dynamics and an interactive carbon cycle. We assume anthropogenic CO<sub>2</sub> emissions according to the RCP 8.5 scenario in the time period from 1850 to 2120. For the time after 2120, we assume zero emissions to evaluate the response of the stabilising Earth System by 2300. <br><br> Our results suggest that vegetation dynamics have a considerable influence on the changing global and regional climate. In the simulations, global mean tree cover extends by 2300 due to increased atmospheric CO<sub>2</sub> concentration and global warming. Thus, land carbon uptake is higher and atmospheric CO<sub>2</sub> concentration is lower by about 40 ppm when considering dynamic vegetation compared to the static pre-industrial vegetation cover. The reduced atmospheric CO<sub>2</sub> concentration is equivalent to a lower global mean temperature. Moreover, biogeophysical effects of vegetation cover shifts influence the climate on a regional scale. Expanded tree cover in the northern high latitudes results in a reduced albedo and additional warming. In the Amazon region, declined tree cover causes a regional warming due to reduced evapotranspiration. As a net effect, vegetation dynamics have a slight attenuating effect on global climate change as the global climate cools by 0.22 K due to natural vegetation cover shifts in 2300. |
first_indexed | 2024-12-23T04:44:42Z |
format | Article |
id | doaj.art-4674e1e1c9a54780acfa77e54d4ae88a |
institution | Directory Open Access Journal |
issn | 2190-4979 2190-4987 |
language | English |
last_indexed | 2024-12-23T04:44:42Z |
publishDate | 2012-11-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Earth System Dynamics |
spelling | doaj.art-4674e1e1c9a54780acfa77e54d4ae88a2022-12-21T17:59:40ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872012-11-013223324310.5194/esd-3-233-2012The influence of vegetation dynamics on anthropogenic climate changeU. PortV. BrovkinM. ClaussenIn this study, vegetation–climate and vegetation–carbon cycle interactions during anthropogenic climate change are assessed by using the Earth System Model of the Max Planck Institute for Meteorology (MPI ESM) that includes vegetation dynamics and an interactive carbon cycle. We assume anthropogenic CO<sub>2</sub> emissions according to the RCP 8.5 scenario in the time period from 1850 to 2120. For the time after 2120, we assume zero emissions to evaluate the response of the stabilising Earth System by 2300. <br><br> Our results suggest that vegetation dynamics have a considerable influence on the changing global and regional climate. In the simulations, global mean tree cover extends by 2300 due to increased atmospheric CO<sub>2</sub> concentration and global warming. Thus, land carbon uptake is higher and atmospheric CO<sub>2</sub> concentration is lower by about 40 ppm when considering dynamic vegetation compared to the static pre-industrial vegetation cover. The reduced atmospheric CO<sub>2</sub> concentration is equivalent to a lower global mean temperature. Moreover, biogeophysical effects of vegetation cover shifts influence the climate on a regional scale. Expanded tree cover in the northern high latitudes results in a reduced albedo and additional warming. In the Amazon region, declined tree cover causes a regional warming due to reduced evapotranspiration. As a net effect, vegetation dynamics have a slight attenuating effect on global climate change as the global climate cools by 0.22 K due to natural vegetation cover shifts in 2300.http://www.earth-syst-dynam.net/3/233/2012/esd-3-233-2012.pdf |
spellingShingle | U. Port V. Brovkin M. Claussen The influence of vegetation dynamics on anthropogenic climate change Earth System Dynamics |
title | The influence of vegetation dynamics on anthropogenic climate change |
title_full | The influence of vegetation dynamics on anthropogenic climate change |
title_fullStr | The influence of vegetation dynamics on anthropogenic climate change |
title_full_unstemmed | The influence of vegetation dynamics on anthropogenic climate change |
title_short | The influence of vegetation dynamics on anthropogenic climate change |
title_sort | influence of vegetation dynamics on anthropogenic climate change |
url | http://www.earth-syst-dynam.net/3/233/2012/esd-3-233-2012.pdf |
work_keys_str_mv | AT uport theinfluenceofvegetationdynamicsonanthropogenicclimatechange AT vbrovkin theinfluenceofvegetationdynamicsonanthropogenicclimatechange AT mclaussen theinfluenceofvegetationdynamicsonanthropogenicclimatechange AT uport influenceofvegetationdynamicsonanthropogenicclimatechange AT vbrovkin influenceofvegetationdynamicsonanthropogenicclimatechange AT mclaussen influenceofvegetationdynamicsonanthropogenicclimatechange |