On mathematical models with unknown nonlinear convection coefficients in one-phase heat transform processes

In this work, one-phase models for restoration of unknown temperature-dependent convection coefficients are considered by using the final observation of the temperature distribution and the phase boundary position. The proposed approach allows one to obtain sufficient conditions of unique identifica...

Full description

Bibliographic Details
Main Author: Nataliya Gol'dman
Format: Article
Language:English
Published: AIMS Press 2019-10-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2019.2.327/fulltext.html
Description
Summary:In this work, one-phase models for restoration of unknown temperature-dependent convection coefficients are considered by using the final observation of the temperature distribution and the phase boundary position. The proposed approach allows one to obtain sufficient conditions of unique identification of such coefficients in a class of smooth functions. Sets of admissible solutions preserving the uniqueness property are indicated. The considered mathematical models allow one to take into account the dependence of thermophysical characteristics upon the temperature. The work is connected with theoretical investigation of inverse Stefan problems for a parabolic equation with unknown coefficients. Such problems essentially differ from Stefan problems in the direct statements, where all the input data are given.
ISSN:2473-6988