Extended Dual-Focus Microscopy for Ratiometric-Based 3D Movement Tracking

Imaging the three-dimensional movement of small organelles in living cells can provide key information for the dynamics of drug delivery and virus transmission in biomedical disciplines. To stably monitor such intracellular motion using microscope, long depth of field along optical axis and accurate...

Full description

Bibliographic Details
Main Authors: Seohyun Lee, Hyuno Kim, Hideo Higuchi
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/18/6243
Description
Summary:Imaging the three-dimensional movement of small organelles in living cells can provide key information for the dynamics of drug delivery and virus transmission in biomedical disciplines. To stably monitor such intracellular motion using microscope, long depth of field along optical axis and accurate three-dimensional tracking are simultaneously required. In the present work, we suggest an extended dual-focus optics microscopy system by combining a bifocal plane imaging scheme and objective lens oscillation, which enables accurate localization for a long axial range. The proposed system exploits high-resolution functionality by concatenating partial calibration result acquired each axial imaging level, maintaining the practical advantages of ratiometric method.
ISSN:2076-3417