Completed Extremely Nonnegative DMD for Color Texture Classification

Dense micro-block difference (DMD) has achieved good performance in gray texture representation and classification. However, its performance is not satisfactory when representing color texture. To alleviate this problem, we propose a novel color texture representation method based on Completed Extre...

Full description

Bibliographic Details
Main Authors: Mingxin Jin, Yongsheng Dong, Mingchuan Zhang, Qingtao Wu, Lintao Zheng, Bin Song, Lei Zhang, Lin Wang
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9104714/
Description
Summary:Dense micro-block difference (DMD) has achieved good performance in gray texture representation and classification. However, its performance is not satisfactory when representing color texture. To alleviate this problem, we propose a novel color texture representation method based on Completed Extremely Nonnegative DMD (CEN-DMD) in this paper. In particular, we first use DMD to model interchannel features and interchannel features of color texture images. Considering that negative value is meaningless in a digital image, we perform a nonnegative operation during the difference process. Due to that the maximum value in a nonnegative difference patch represents a significant difference, we construct the Extremely Nonnegative DMD (EN-DMD) by fusing the maximum values of the intrachannel features and the maximum of interchannel features, and further build Completed Extremely Nonnegative DMD (CEN-DMD) by fusing EN-DMDs at five scales and the global feature of the color texture images. Finally, the Fisher Vector is used to encode the CEN-DMD to obtain a color texture descriptor. Experimental results on five published standard color texture datasets (CUReT, Colored Brodatz, VisTex, USPTex and KTH-TIPS) reveal that CEN-DMD is effective when compared to the thirteen representative color texture classification methods.
ISSN:2169-3536