Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations
Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes) are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costa...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2010-10-01
|
Series: | Natural Hazards and Earth System Sciences |
Online Access: | http://www.nat-hazards-earth-syst-sci.net/10/2199/2010/nhess-10-2199-2010.pdf |
_version_ | 1811298137947504640 |
---|---|
author | C. Claud B. Alhammoud B. M. Funatsu J.-P. Chaboureau |
author_facet | C. Claud B. Alhammoud B. M. Funatsu J.-P. Chaboureau |
author_sort | C. Claud |
collection | DOAJ |
description | Subsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes) are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited. <br><br> Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B)/MHS (Microwave Humidity Sounder) observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A) observations give insights into the larger synoptic-scale environment in which they occur. <br><br> Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively) were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation. |
first_indexed | 2024-04-13T06:15:11Z |
format | Article |
id | doaj.art-4687c0a7dd394cac9c5cdfd04e7a022d |
institution | Directory Open Access Journal |
issn | 1561-8633 1684-9981 |
language | English |
last_indexed | 2024-04-13T06:15:11Z |
publishDate | 2010-10-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Natural Hazards and Earth System Sciences |
spelling | doaj.art-4687c0a7dd394cac9c5cdfd04e7a022d2022-12-22T02:58:51ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812010-10-0110102199221310.5194/nhess-10-2199-2010Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observationsC. ClaudB. AlhammoudB. M. FunatsuJ.-P. ChaboureauSubsynoptic scale vortices that have been likened to tropical cyclones or polar lows (medicanes) are occasionally observed over the Mediterranean Sea. Generated over the sea, they are usually associated with strong winds and heavy precipitation and thus can be highly destructive in islands and costal areas. Only an accurate forecasting of such systems could mitigate these effects. However, at the moment, the predictability of these systems remains limited. <br><br> Due to the scarcity of conventional observations, use is made of NOAA/MetOp satellite observations, for which advantage can be taken of the time coverage differences between the platforms that carry it, to give a very complete temporal description of the disturbances. A combination of AMSU-B (Advanced Microwave Sounding Unit-B)/MHS (Microwave Humidity Sounder) observations permit to investigate precipitation associated with these systems while coincident AMSU-A (Advanced Microwave Sounding Unit-A) observations give insights into the larger synoptic-scale environment in which they occur. <br><br> Three different cases (in terms of intensity, location, trajectory, duration, and periods of the year – May, September and December, respectively) were investigated. Throughout these time periods, AMSU-A observations show that the persisting deep outflow of cold air over the sea together with an upper-level trough upstream constituted a favourable environment for the development of medicanes. AMSU-B/MHS based diagnostics show that convection and precipitation areas are large in the early stage of the low, but significantly reduced afterwards. Convection is maximum just after the upper-level trough, located upstream of cold mid-tropospheric air, reached its maximum intensity and acquired a cyclonic orientation.http://www.nat-hazards-earth-syst-sci.net/10/2199/2010/nhess-10-2199-2010.pdf |
spellingShingle | C. Claud B. Alhammoud B. M. Funatsu J.-P. Chaboureau Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations Natural Hazards and Earth System Sciences |
title | Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations |
title_full | Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations |
title_fullStr | Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations |
title_full_unstemmed | Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations |
title_short | Mediterranean hurricanes: large-scale environment and convective and precipitating areas from satellite microwave observations |
title_sort | mediterranean hurricanes large scale environment and convective and precipitating areas from satellite microwave observations |
url | http://www.nat-hazards-earth-syst-sci.net/10/2199/2010/nhess-10-2199-2010.pdf |
work_keys_str_mv | AT cclaud mediterraneanhurricaneslargescaleenvironmentandconvectiveandprecipitatingareasfromsatellitemicrowaveobservations AT balhammoud mediterraneanhurricaneslargescaleenvironmentandconvectiveandprecipitatingareasfromsatellitemicrowaveobservations AT bmfunatsu mediterraneanhurricaneslargescaleenvironmentandconvectiveandprecipitatingareasfromsatellitemicrowaveobservations AT jpchaboureau mediterraneanhurricaneslargescaleenvironmentandconvectiveandprecipitatingareasfromsatellitemicrowaveobservations |