Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtle
While predicting species status into the future is inherently uncertain, it is necessary to properly inform conservation decision-making. Using a triple loop stochastic simulation model with a population viability analysis, we projected populations of the northwestern and southwestern pond turtle (A...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-07-01
|
Series: | Climate Change Ecology |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S266690052300014X |
_version_ | 1797378591921537024 |
---|---|
author | Kaili M. Gregory Cat Darst Samantha M. Lantz Katherine Powelson Conor P. McGowan |
author_facet | Kaili M. Gregory Cat Darst Samantha M. Lantz Katherine Powelson Conor P. McGowan |
author_sort | Kaili M. Gregory |
collection | DOAJ |
description | While predicting species status into the future is inherently uncertain, it is necessary to properly inform conservation decision-making. Using a triple loop stochastic simulation model with a population viability analysis, we projected populations of the northwestern and southwestern pond turtle (Actinemys marmorata and Actinemys pallida, respectively) to the end of the century. We integrated the future trajectories and demographic or population-level effects of three primary threats (drought, invasive bullfrogs, and habitat loss) into the predictive model. Extinction risk of both species increased into the future, with projected widespread declines in abundance and a consistent, negative population growth. By the end of the century, mean probability of extinction was 50 % for the northwestern pond turtle and 75 % for the southwestern pond turtle. The northwestern pond turtle exhibited a latitudinal trend, with southern population units at greater risk of extinction. The population growth rate of the northwestern pond turtle was sensitive to the threat of invasive bullfrogs, whereas drought most strongly influenced southwestern pond turtle growth rates. Future drought conditions will likely be more stochastic than modeled here, where projection methods were limited by the scale and congruency of drought information in pond turtle studies. The habitat loss threat was negligible for both species, although it is likely underestimated due to lack of relevant information on both its future trajectory and effect on vital rates. This work served as decision support science for the Species Status Assessment of the two species, and ultimately, the listing decision under the U.S. Endangered Species Act. |
first_indexed | 2024-03-08T20:09:58Z |
format | Article |
id | doaj.art-468899bda7a6491482585ec30d9d67e6 |
institution | Directory Open Access Journal |
issn | 2666-9005 |
language | English |
last_indexed | 2024-03-08T20:09:58Z |
publishDate | 2024-07-01 |
publisher | Elsevier |
record_format | Article |
series | Climate Change Ecology |
spelling | doaj.art-468899bda7a6491482585ec30d9d67e62023-12-23T05:22:59ZengElsevierClimate Change Ecology2666-90052024-07-017100078Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtleKaili M. Gregory0Cat Darst1Samantha M. Lantz2Katherine Powelson3Conor P. McGowan4Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL 32611, United States; Corresponding author.U.S. Fish and Wildlife Service, Ventura, CA 93003, United StatesU.S. Fish and Wildlife Service, Ventura, CA 93003, United StatesU.S. Forest Service, Tahoe National Forest, 631 Coyote Street, Nevada City, CA 95959, United StatesDepartment of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL 32611, United States; U.S. Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, 2295 Mowry Road P.O. Box 110485, Gainesville, FL 32611-0485, United StatesWhile predicting species status into the future is inherently uncertain, it is necessary to properly inform conservation decision-making. Using a triple loop stochastic simulation model with a population viability analysis, we projected populations of the northwestern and southwestern pond turtle (Actinemys marmorata and Actinemys pallida, respectively) to the end of the century. We integrated the future trajectories and demographic or population-level effects of three primary threats (drought, invasive bullfrogs, and habitat loss) into the predictive model. Extinction risk of both species increased into the future, with projected widespread declines in abundance and a consistent, negative population growth. By the end of the century, mean probability of extinction was 50 % for the northwestern pond turtle and 75 % for the southwestern pond turtle. The northwestern pond turtle exhibited a latitudinal trend, with southern population units at greater risk of extinction. The population growth rate of the northwestern pond turtle was sensitive to the threat of invasive bullfrogs, whereas drought most strongly influenced southwestern pond turtle growth rates. Future drought conditions will likely be more stochastic than modeled here, where projection methods were limited by the scale and congruency of drought information in pond turtle studies. The habitat loss threat was negligible for both species, although it is likely underestimated due to lack of relevant information on both its future trajectory and effect on vital rates. This work served as decision support science for the Species Status Assessment of the two species, and ultimately, the listing decision under the U.S. Endangered Species Act.http://www.sciencedirect.com/science/article/pii/S266690052300014XSpecies status assessmentEndangered speciesDroughtInvasive speciesTurtleExtinction risk |
spellingShingle | Kaili M. Gregory Cat Darst Samantha M. Lantz Katherine Powelson Conor P. McGowan Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtle Climate Change Ecology Species status assessment Endangered species Drought Invasive species Turtle Extinction risk |
title | Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtle |
title_full | Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtle |
title_fullStr | Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtle |
title_full_unstemmed | Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtle |
title_short | Effects of drought, invasive species, and habitat loss on future extinction risk of two species of imperiled freshwater turtle |
title_sort | effects of drought invasive species and habitat loss on future extinction risk of two species of imperiled freshwater turtle |
topic | Species status assessment Endangered species Drought Invasive species Turtle Extinction risk |
url | http://www.sciencedirect.com/science/article/pii/S266690052300014X |
work_keys_str_mv | AT kailimgregory effectsofdroughtinvasivespeciesandhabitatlossonfutureextinctionriskoftwospeciesofimperiledfreshwaterturtle AT catdarst effectsofdroughtinvasivespeciesandhabitatlossonfutureextinctionriskoftwospeciesofimperiledfreshwaterturtle AT samanthamlantz effectsofdroughtinvasivespeciesandhabitatlossonfutureextinctionriskoftwospeciesofimperiledfreshwaterturtle AT katherinepowelson effectsofdroughtinvasivespeciesandhabitatlossonfutureextinctionriskoftwospeciesofimperiledfreshwaterturtle AT conorpmcgowan effectsofdroughtinvasivespeciesandhabitatlossonfutureextinctionriskoftwospeciesofimperiledfreshwaterturtle |