A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification

In this work, we address the problem of improving the classification performance of machine learning models, especially in the presence of noisy and outlier data. To this end, we first innovatively design a generalized adaptive robust loss function called <inline-formula><math xmlns="h...

Full description

Bibliographic Details
Main Authors: Bao Ma, Jun Ma, Guolin Yu
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/8/737
_version_ 1797585521781768192
author Bao Ma
Jun Ma
Guolin Yu
author_facet Bao Ma
Jun Ma
Guolin Yu
author_sort Bao Ma
collection DOAJ
description In this work, we address the problem of improving the classification performance of machine learning models, especially in the presence of noisy and outlier data. To this end, we first innovatively design a generalized adaptive robust loss function called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. Intuitively, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> can improve the robustness of the model by selecting different robust loss functions for different learning tasks during the learning process via the adaptive parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>. Compared with other robust loss functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, making it suitable for a wide range of machine learning applications. Secondly, a new robust semi-supervised learning framework for pattern classification is proposed. In this learning framework, the proposed robust loss function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and capped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula>-norm robust distance metric are introduced to improve the robustness and generalization performance of the model, especially when the outliers are far from the normal data distributions. Simultaneously, based on this learning framework, the Welsch manifold robust twin bounded support vector machine (WMRTBSVM) and its least-squares version are developed. Finally, two effective iterative optimization algorithms are designed, their convergence is proved, and their complexity is calculated. Experimental results on several datasets with different noise settings and different evaluation criteria show that our methods have better classification performance and robustness. With the Cancer dataset, when there is no noise, the classification accuracy of our proposed methods is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.17</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>95.62</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively. When the Gaussian noise is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>50</mn><mo>%</mo></mrow></semantics></math></inline-formula>, the classification accuracy of our proposed methods is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>91.76</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.59</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively, demonstrating that our method has satisfactory classification performance and robustness.
first_indexed 2024-03-11T00:07:19Z
format Article
id doaj.art-468e55dc5c9c494a8ced975914158f1a
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T00:07:19Z
publishDate 2023-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-468e55dc5c9c494a8ced975914158f1a2023-11-19T00:14:27ZengMDPI AGAxioms2075-16802023-07-0112873710.3390/axioms12080737A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern ClassificationBao Ma0Jun Ma1Guolin Yu2School of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, ChinaSchool of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, ChinaSchool of Mathematics and Information Sciences, North Minzu University, Yinchuan 750021, ChinaIn this work, we address the problem of improving the classification performance of machine learning models, especially in the presence of noisy and outlier data. To this end, we first innovatively design a generalized adaptive robust loss function called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. Intuitively, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> can improve the robustness of the model by selecting different robust loss functions for different learning tasks during the learning process via the adaptive parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula>. Compared with other robust loss functions, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> has some desirable salient properties, such as symmetry, boundedness, robustness, nonconvexity, and adaptivity, making it suitable for a wide range of machine learning applications. Secondly, a new robust semi-supervised learning framework for pattern classification is proposed. In this learning framework, the proposed robust loss function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>V</mi><mi>θ</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and capped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>L</mi><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></semantics></math></inline-formula>-norm robust distance metric are introduced to improve the robustness and generalization performance of the model, especially when the outliers are far from the normal data distributions. Simultaneously, based on this learning framework, the Welsch manifold robust twin bounded support vector machine (WMRTBSVM) and its least-squares version are developed. Finally, two effective iterative optimization algorithms are designed, their convergence is proved, and their complexity is calculated. Experimental results on several datasets with different noise settings and different evaluation criteria show that our methods have better classification performance and robustness. With the Cancer dataset, when there is no noise, the classification accuracy of our proposed methods is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>94.17</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>95.62</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively. When the Gaussian noise is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>50</mn><mo>%</mo></mrow></semantics></math></inline-formula>, the classification accuracy of our proposed methods is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>91.76</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>90.59</mn><mo>%</mo></mrow></semantics></math></inline-formula>, respectively, demonstrating that our method has satisfactory classification performance and robustness.https://www.mdpi.com/2075-1680/12/8/737robust distance metricloss functionmanifold regularizationsemi-supervised learningpattern classification
spellingShingle Bao Ma
Jun Ma
Guolin Yu
A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification
Axioms
robust distance metric
loss function
manifold regularization
semi-supervised learning
pattern classification
title A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification
title_full A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification
title_fullStr A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification
title_full_unstemmed A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification
title_short A Novel Robust Metric Distance Optimization-Driven Manifold Learning Framework for Semi-Supervised Pattern Classification
title_sort novel robust metric distance optimization driven manifold learning framework for semi supervised pattern classification
topic robust distance metric
loss function
manifold regularization
semi-supervised learning
pattern classification
url https://www.mdpi.com/2075-1680/12/8/737
work_keys_str_mv AT baoma anovelrobustmetricdistanceoptimizationdrivenmanifoldlearningframeworkforsemisupervisedpatternclassification
AT junma anovelrobustmetricdistanceoptimizationdrivenmanifoldlearningframeworkforsemisupervisedpatternclassification
AT guolinyu anovelrobustmetricdistanceoptimizationdrivenmanifoldlearningframeworkforsemisupervisedpatternclassification
AT baoma novelrobustmetricdistanceoptimizationdrivenmanifoldlearningframeworkforsemisupervisedpatternclassification
AT junma novelrobustmetricdistanceoptimizationdrivenmanifoldlearningframeworkforsemisupervisedpatternclassification
AT guolinyu novelrobustmetricdistanceoptimizationdrivenmanifoldlearningframeworkforsemisupervisedpatternclassification