Analytical Models for Multipath and Switch Leakage for the SWOT Interferometer
The Ka-Band Radar Interferometer (KaRIn) instrument on the Surface Water and Ocean Topography (SWOT) mission is a single-pass synthetic aperture radar (SAR) interferometer tasked with, among others, measuring ocean topography to within a few centimeters over kilometer scale resolutions. A SAR interf...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/22/5/1931 |
Summary: | The Ka-Band Radar Interferometer (KaRIn) instrument on the Surface Water and Ocean Topography (SWOT) mission is a single-pass synthetic aperture radar (SAR) interferometer tasked with, among others, measuring ocean topography to within a few centimeters over kilometer scale resolutions. A SAR interferometer relies on very precise phase difference measurements between two spatially distant antennas to estimate topography. Multipath phase caused by unintended scattering off the spacecraft structure is a known error source for radar interferometers and takes up a significant portion of the KaRIn error budget. This paper outlines some analytical multipath models that were used for instrument design, performance analysis and mitigation of the multipath signal. |
---|---|
ISSN: | 1424-8220 |