Photon-photon scattering from a UV-complete gravity QFT

Abstract Quantum quadratic gravity (QQG) produces a tree-level differential cross section for γγ → γγ that is well-behaved at all energies. From this we can study how the corrections to low energy scattering amplitudes are related to the UV physics, in particular to the exchange of the massive gravi...

Full description

Bibliographic Details
Main Author: Bob Holdom
Format: Article
Language:English
Published: SpringerOpen 2022-04-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP04(2022)133
Description
Summary:Abstract Quantum quadratic gravity (QQG) produces a tree-level differential cross section for γγ → γγ that is well-behaved at all energies. From this we can study how the corrections to low energy scattering amplitudes are related to the UV physics, in particular to the exchange of the massive graviparticles. An effective forward scattering amplitude is obtained by separating out the effects of the t-channel graviton pole. This is possible due to the UV-completeness, and even though the Froissart bound is not satisfied. We then consider photon-photon scattering to two graviparticles and a further imaginary contribution to the γγ → γγ forward scattering amplitude. Unitarity without positivity is a key property of QQG and it impacts all our results.
ISSN:1029-8479