Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.

The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking an...

Full description

Bibliographic Details
Main Authors: Monika Rola, Jakub Krassowski, Julita Górska, Anna Grobelna, Wojciech Płonka, Agata Paneth, Piotr Paneth
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0256834
_version_ 1818892080584327168
author Monika Rola
Jakub Krassowski
Julita Górska
Anna Grobelna
Wojciech Płonka
Agata Paneth
Piotr Paneth
author_facet Monika Rola
Jakub Krassowski
Julita Górska
Anna Grobelna
Wojciech Płonka
Agata Paneth
Piotr Paneth
author_sort Monika Rola
collection DOAJ
description The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking and structure-activity relationship modeling either by classical linear QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of the results obtained using different docking protocols on the example of the search for bioactivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus with ACE2 human receptor interface. Based on over 1800 structures in the training set we have predicted binding properties of the complete set of nearly 600000 structures from the same class using the Machine Learning Random Forest Regressor approach.
first_indexed 2024-12-19T17:51:01Z
format Article
id doaj.art-46b2edb30ec148f6b53976bcf1873f07
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-19T17:51:01Z
publishDate 2021-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-46b2edb30ec148f6b53976bcf1873f072022-12-21T20:11:55ZengPublic Library of Science (PLoS)PLoS ONE1932-62032021-01-01169e025683410.1371/journal.pone.0256834Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.Monika RolaJakub KrassowskiJulita GórskaAnna GrobelnaWojciech PłonkaAgata PanethPiotr PanethThe current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking and structure-activity relationship modeling either by classical linear QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of the results obtained using different docking protocols on the example of the search for bioactivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus with ACE2 human receptor interface. Based on over 1800 structures in the training set we have predicted binding properties of the complete set of nearly 600000 structures from the same class using the Machine Learning Random Forest Regressor approach.https://doi.org/10.1371/journal.pone.0256834
spellingShingle Monika Rola
Jakub Krassowski
Julita Górska
Anna Grobelna
Wojciech Płonka
Agata Paneth
Piotr Paneth
Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.
PLoS ONE
title Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.
title_full Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.
title_fullStr Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.
title_full_unstemmed Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.
title_short Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2-ACE2 interface.
title_sort machine learning augmented docking studies of aminothioureas at the sars cov 2 ace2 interface
url https://doi.org/10.1371/journal.pone.0256834
work_keys_str_mv AT monikarola machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT jakubkrassowski machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT julitagorska machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT annagrobelna machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT wojciechpłonka machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT agatapaneth machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT piotrpaneth machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface