Simultaneous Extraction and Identification of Phenolic Compounds in Anoectochilus roxburghii Using Microwave-Assisted Extraction Combined with UPLC-Q-TOF-MS/MS and Their Antioxidant Activities

This study used MAE and RSM to extract phenolic compounds from Anoectochilus roxburghii, and the optimum conditions defined by the model to give an optimum yield of 1.31%. The antioxidant activity in vitro showed when the concentration of phenolic compounds was reached 1 mg mL-1, the clearance rates...

Full description

Bibliographic Details
Main Authors: Mengjie Xu, Qingsong Shao, Shenyi Ye, Shuailing Li, Mei Wu, Mozhi Ding, Yanjing Li
Format: Article
Language:English
Published: Frontiers Media S.A. 2017-08-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fpls.2017.01474/full
Description
Summary:This study used MAE and RSM to extract phenolic compounds from Anoectochilus roxburghii, and the optimum conditions defined by the model to give an optimum yield of 1.31%. The antioxidant activity in vitro showed when the concentration of phenolic compounds was reached 1 mg mL-1, the clearance rates were 82.58% for DPPH and 97.62% for ABTS+. In vivo antioxidant experiments used D-galactose to build oxidative damage in healthy Kunming mice. The result showed that the extractions of A. roxburghii can improve the antioxidant ability and the medium and low dose groups had better ability to scavenge free radicals. The UPLC-Q-TOF-MS/MS was developed to identify 21 kinds of phenolic compounds by molecular mass, ms/ms fragmentation, as well as retention time. The result showed that the phenolic compounds of A. roxburghii had significant potential as a natural antioxidant to promote health and to reduce the risk of disease.
ISSN:1664-462X