Relation between dual S-algebras and BE-algebras
<span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"><p>In this paper, we investigate the relationship between dual (Weak) <span style="font-family: CMR8; font-size: xx-small;">Subtraction al...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
2015-05-01
|
Series: | Le Matematiche |
Subjects: | |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1108 |
_version_ | 1818974249169190912 |
---|---|
author | Arsham Borumand Saeid Akbar Rezaei |
author_facet | Arsham Borumand Saeid Akbar Rezaei |
author_sort | Arsham Borumand Saeid |
collection | DOAJ |
description | <span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"><p>In this paper, we investigate the relationship between dual (Weak) <span style="font-family: CMR8; font-size: xx-small;">Subtraction algebras, Heyting algebras and</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;"> BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebras. In fact, the purpose <span style="font-family: CMR8; font-size: xx-small;">of this paper is to show that </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebra is a generalization of Heyting algebra and dual (Weak) Subtraction algebras. Also, we show that a bounded <span style="font-family: CMR8; font-size: xx-small;">commutative self distributive </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span>algebra is equivalent to the Heyting algebra.</p></span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"> </span></span><p> </p> |
first_indexed | 2024-12-20T15:37:03Z |
format | Article |
id | doaj.art-46c347323b734fa48302e8022fbda65e |
institution | Directory Open Access Journal |
issn | 0373-3505 2037-5298 |
language | English |
last_indexed | 2024-12-20T15:37:03Z |
publishDate | 2015-05-01 |
publisher | Università degli Studi di Catania |
record_format | Article |
series | Le Matematiche |
spelling | doaj.art-46c347323b734fa48302e8022fbda65e2022-12-21T19:35:21ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982015-05-017017179929Relation between dual S-algebras and BE-algebrasArsham Borumand Saeid0Akbar RezaeiDept. of Math.Shahid Bahonar university of Kerman, Kerman, Iran.<span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"><p>In this paper, we investigate the relationship between dual (Weak) <span style="font-family: CMR8; font-size: xx-small;">Subtraction algebras, Heyting algebras and</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;"> BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebras. In fact, the purpose <span style="font-family: CMR8; font-size: xx-small;">of this paper is to show that </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebra is a generalization of Heyting algebra and dual (Weak) Subtraction algebras. Also, we show that a bounded <span style="font-family: CMR8; font-size: xx-small;">commutative self distributive </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span>algebra is equivalent to the Heyting algebra.</p></span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"> </span></span><p> </p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1108(Heyting, implication, Hilbert) algebraBE/CI/KU –algebradual(W S/S/Q/BCK)–algebra |
spellingShingle | Arsham Borumand Saeid Akbar Rezaei Relation between dual S-algebras and BE-algebras Le Matematiche (Heyting, implication, Hilbert) algebra BE/CI/KU –algebra dual(W S/S/Q/BCK)–algebra |
title | Relation between dual S-algebras and BE-algebras |
title_full | Relation between dual S-algebras and BE-algebras |
title_fullStr | Relation between dual S-algebras and BE-algebras |
title_full_unstemmed | Relation between dual S-algebras and BE-algebras |
title_short | Relation between dual S-algebras and BE-algebras |
title_sort | relation between dual s algebras and be algebras |
topic | (Heyting, implication, Hilbert) algebra BE/CI/KU –algebra dual(W S/S/Q/BCK)–algebra |
url | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1108 |
work_keys_str_mv | AT arshamborumandsaeid relationbetweendualsalgebrasandbealgebras AT akbarrezaei relationbetweendualsalgebrasandbealgebras |