Relation between dual S-algebras and BE-algebras

<span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"><p>In this paper, we investigate the relationship between dual (Weak) <span style="font-family: CMR8; font-size: xx-small;">Subtraction al...

Full description

Bibliographic Details
Main Authors: Arsham Borumand Saeid, Akbar Rezaei
Format: Article
Language:English
Published: Università degli Studi di Catania 2015-05-01
Series:Le Matematiche
Subjects:
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1108
_version_ 1818974249169190912
author Arsham Borumand Saeid
Akbar Rezaei
author_facet Arsham Borumand Saeid
Akbar Rezaei
author_sort Arsham Borumand Saeid
collection DOAJ
description <span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"><p>In this paper, we investigate the relationship between dual (Weak) <span style="font-family: CMR8; font-size: xx-small;">Subtraction algebras, Heyting algebras and</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;"> BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebras. In fact, the purpose <span style="font-family: CMR8; font-size: xx-small;">of this paper is to show that </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebra is a generalization of Heyting algebra and dual (Weak) Subtraction algebras. Also, we show that a bounded <span style="font-family: CMR8; font-size: xx-small;">commutative self distributive </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span>algebra is equivalent to the Heyting algebra.</p></span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"> </span></span><p> </p>
first_indexed 2024-12-20T15:37:03Z
format Article
id doaj.art-46c347323b734fa48302e8022fbda65e
institution Directory Open Access Journal
issn 0373-3505
2037-5298
language English
last_indexed 2024-12-20T15:37:03Z
publishDate 2015-05-01
publisher Università degli Studi di Catania
record_format Article
series Le Matematiche
spelling doaj.art-46c347323b734fa48302e8022fbda65e2022-12-21T19:35:21ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982015-05-017017179929Relation between dual S-algebras and BE-algebrasArsham Borumand Saeid0Akbar RezaeiDept. of Math.Shahid Bahonar university of Kerman, Kerman, Iran.<span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"><p>In this paper, we investigate the relationship between dual (Weak) <span style="font-family: CMR8; font-size: xx-small;">Subtraction algebras, Heyting algebras and</span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;"> BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebras. In fact, the purpose <span style="font-family: CMR8; font-size: xx-small;">of this paper is to show that </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;">algebra is a generalization of Heyting algebra and dual (Weak) Subtraction algebras. Also, we show that a bounded <span style="font-family: CMR8; font-size: xx-small;">commutative self distributive </span></span></span><span style="font-family: CMMI8; font-size: xx-small;"><span style="font-family: CMMI8; font-size: xx-small;">BE-</span></span>algebra is equivalent to the Heyting algebra.</p></span></span><span style="font-family: CMR8; font-size: xx-small;"><span style="font-family: CMR8; font-size: xx-small;"> </span></span><p> </p>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1108(Heyting, implication, Hilbert) algebraBE/CI/KU –algebradual(W S/S/Q/BCK)–algebra
spellingShingle Arsham Borumand Saeid
Akbar Rezaei
Relation between dual S-algebras and BE-algebras
Le Matematiche
(Heyting, implication, Hilbert) algebra
BE/CI/KU –algebra
dual(W S/S/Q/BCK)–algebra
title Relation between dual S-algebras and BE-algebras
title_full Relation between dual S-algebras and BE-algebras
title_fullStr Relation between dual S-algebras and BE-algebras
title_full_unstemmed Relation between dual S-algebras and BE-algebras
title_short Relation between dual S-algebras and BE-algebras
title_sort relation between dual s algebras and be algebras
topic (Heyting, implication, Hilbert) algebra
BE/CI/KU –algebra
dual(W S/S/Q/BCK)–algebra
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/1108
work_keys_str_mv AT arshamborumandsaeid relationbetweendualsalgebrasandbealgebras
AT akbarrezaei relationbetweendualsalgebrasandbealgebras