A bivalent subunit vaccine efficiently produced in Pichia pastoris against SARS-CoV-2 and emerging variants

The emergence of severe acute respiratory syndrome coronavirus type II (SARS-CoV-2) variants have led to a decline in the protection of existing vaccines and antibodies, and there is an urgent need for a broad-spectrum vaccination strategy to reduce the pressure on the prevention and control of the...

Full description

Bibliographic Details
Main Authors: Huifang Xu, Tiantian Wang, Peng Sun, Xuchen Hou, Xin Gong, Bin Zhang, Jun Wu, Bo Liu
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-01-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmicb.2022.1093080/full
Description
Summary:The emergence of severe acute respiratory syndrome coronavirus type II (SARS-CoV-2) variants have led to a decline in the protection of existing vaccines and antibodies, and there is an urgent need for a broad-spectrum vaccination strategy to reduce the pressure on the prevention and control of the pandemic. In this study, the receptor binding domain (RBD) of the SARS-CoV-2 Beta variant was successfully expressed through a glycoengineered yeast platform. To pursue a more broad-spectrum vaccination strategy, RBD-Beta and RBD-wild type were mixed at the ratio of 1:1 with Al(OH)3 and CpG double adjuvants for the immunization of BALB/c mice. This bivalent vaccine stimulated robust conjugated antibody titers and a broader spectrum of neutralizing antibody titers. These results suggested that a bivalent vaccine of RBD-Beta and RBD-wild type could be a possible broad-spectrum vaccination strategy.
ISSN:1664-302X