Green synthesis of gold nanoparticles using a Cordyceps militaris extract and their antiproliferative effect in liver cancer cells (HepG2)

Hepatocellular carcinoma is the most common liver cancer among different types of cancers. Cordyceps Militaris mushroom species traditionally used as an alternative medicine in china for centuries. Gold nanoparticles plays vital role in the development of the anticancer drugs. In our research, we in...

Full description

Bibliographic Details
Main Authors: Yujiang Ji, Yang Cao, Yong Song
Format: Article
Language:English
Published: Taylor & Francis Group 2019-12-01
Series:Artificial Cells, Nanomedicine, and Biotechnology
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/21691401.2019.1629952
Description
Summary:Hepatocellular carcinoma is the most common liver cancer among different types of cancers. Cordyceps Militaris mushroom species traditionally used as an alternative medicine in china for centuries. Gold nanoparticles plays vital role in the development of the anticancer drugs. In our research, we investigated the gold nanoparticles with C. Militaris on the hepatocellular carcinoma HepG2 cells. The synthesized gold nanoparticles stability and integrity was studied at different time intervals. The gold nanoparticles potentially halt the growth of the HepG2 cells at the IC50 concentration between 10 μg and 12.5 μg/ml. The HR-TEM and XRD revealed the size and shape of the synthesized gold nanoparticles. The size of the gold nanoparticles was about 15 20 nm and the shape of gold nanoparticles was face-center-cubic structure. The FT-IR results proved that the gold nanoparticles contain hydroxyl and alkynes groups. The gold nanoparticles extract develops ROS and cause damage to the mitochondrial membrane potential in the hepatocellular carcinoma HepG2 cells. The gold nanoparticles extract tends to initiate the apoptosis by activating the Bax, Bid, caspases and inhibits the activation anti-apoptotic bcl-2 in the HepG2 cells. Our results concluded that the gold nanoparticles with C. Militaris would be an efficient chemotherapeutic drug against the hepatocellular carcinoma cells.
ISSN:2169-1401
2169-141X