The maximal size of a minimal generating set

A generating set for a finite group G is minimal if no proper subset generates G, and $m(G)$ denotes the maximal size of a minimal generating set for G. We prove a conjecture of Lucchini, Moscatiello and Spiga by showing that there exist $a,b> 0$ such that any finite group G satisfi...

Full description

Bibliographic Details
Main Author: Scott Harper
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509423000713/type/journal_article
_version_ 1797745888307707904
author Scott Harper
author_facet Scott Harper
author_sort Scott Harper
collection DOAJ
description A generating set for a finite group G is minimal if no proper subset generates G, and $m(G)$ denotes the maximal size of a minimal generating set for G. We prove a conjecture of Lucchini, Moscatiello and Spiga by showing that there exist $a,b> 0$ such that any finite group G satisfies $m(G) \leqslant a \cdot \delta (G)^b$ , for $\delta (G) = \sum _{p \text { prime}} m(G_p)$ , where $G_p$ is a Sylow p-subgroup of G. To do this, we first bound $m(G)$ for all almost simple groups of Lie type (until now, no nontrivial bounds were known except for groups of rank $1$ or $2$ ). In particular, we prove that there exist $a,b> 0$ such that any finite simple group G of Lie type of rank r over the field $\mathbb {F}_{p^f}$ satisfies $r + \omega (f) \leqslant m(G) \leqslant a(r + \omega (f))^b$ , where $\omega (f)$ denotes the number of distinct prime divisors of f. In the process, we confirm a conjecture of Gill and Liebeck that there exist $a,b> 0$ such that a minimal base for a faithful primitive action of an almost simple group of Lie type of rank r over $\mathbb {F}_{p^f}$ has size at most $ar^b + \omega (f)$ .
first_indexed 2024-03-12T15:29:24Z
format Article
id doaj.art-46d5df7c84af44008eff16cb3bd0e7b2
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-03-12T15:29:24Z
publishDate 2023-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-46d5df7c84af44008eff16cb3bd0e7b22023-08-10T08:17:56ZengCambridge University PressForum of Mathematics, Sigma2050-50942023-01-011110.1017/fms.2023.71The maximal size of a minimal generating setScott Harper0https://orcid.org/0000-0002-0056-2914School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS, United Kingdom; E-mail:A generating set for a finite group G is minimal if no proper subset generates G, and $m(G)$ denotes the maximal size of a minimal generating set for G. We prove a conjecture of Lucchini, Moscatiello and Spiga by showing that there exist $a,b> 0$ such that any finite group G satisfies $m(G) \leqslant a \cdot \delta (G)^b$ , for $\delta (G) = \sum _{p \text { prime}} m(G_p)$ , where $G_p$ is a Sylow p-subgroup of G. To do this, we first bound $m(G)$ for all almost simple groups of Lie type (until now, no nontrivial bounds were known except for groups of rank $1$ or $2$ ). In particular, we prove that there exist $a,b> 0$ such that any finite simple group G of Lie type of rank r over the field $\mathbb {F}_{p^f}$ satisfies $r + \omega (f) \leqslant m(G) \leqslant a(r + \omega (f))^b$ , where $\omega (f)$ denotes the number of distinct prime divisors of f. In the process, we confirm a conjecture of Gill and Liebeck that there exist $a,b> 0$ such that a minimal base for a faithful primitive action of an almost simple group of Lie type of rank r over $\mathbb {F}_{p^f}$ has size at most $ar^b + \omega (f)$ .https://www.cambridge.org/core/product/identifier/S2050509423000713/type/journal_article20F0520B0520E2820E32
spellingShingle Scott Harper
The maximal size of a minimal generating set
Forum of Mathematics, Sigma
20F05
20B05
20E28
20E32
title The maximal size of a minimal generating set
title_full The maximal size of a minimal generating set
title_fullStr The maximal size of a minimal generating set
title_full_unstemmed The maximal size of a minimal generating set
title_short The maximal size of a minimal generating set
title_sort maximal size of a minimal generating set
topic 20F05
20B05
20E28
20E32
url https://www.cambridge.org/core/product/identifier/S2050509423000713/type/journal_article
work_keys_str_mv AT scottharper themaximalsizeofaminimalgeneratingset
AT scottharper maximalsizeofaminimalgeneratingset