Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage

In this paper, we study a time-periodic and delayed reaction-diffusion system with quiescent stage in both unbounded and bounded habitat domains. In unbounded habitat domain $\mathbb{R}$, we first prove the existence of the asymptotic spreading speed and then show that it coincides with the minimal...

Full description

Bibliographic Details
Main Authors: Shuang-Ming Wang, Liang Zhang
Format: Article
Language:English
Published: University of Szeged 2016-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4414
_version_ 1797830570673176576
author Shuang-Ming Wang
Liang Zhang
author_facet Shuang-Ming Wang
Liang Zhang
author_sort Shuang-Ming Wang
collection DOAJ
description In this paper, we study a time-periodic and delayed reaction-diffusion system with quiescent stage in both unbounded and bounded habitat domains. In unbounded habitat domain $\mathbb{R}$, we first prove the existence of the asymptotic spreading speed and then show that it coincides with the minimal wave speed for monotone periodic traveling waves. In a bounded habitat domain $\Omega\subset\mathbb{R}^N\ (N\geq1)$, we obtain the threshold result on the global attractivity of either the zero solution or the unique positive time-periodic solution of the system.
first_indexed 2024-04-09T13:39:18Z
format Article
id doaj.art-46da569fbaf44995b6192f9275109672
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:39:18Z
publishDate 2016-07-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-46da569fbaf44995b6192f92751096722023-05-09T07:53:05ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752016-07-0120164712510.14232/ejqtde.2016.1.474414Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stageShuang-Ming Wang0Liang Zhang1Lanzhou University of Finance and Economics, Lanzhou, Gansu, ChinaLanzhou University, Lanzhou, Gansu, P.R. ChinaIn this paper, we study a time-periodic and delayed reaction-diffusion system with quiescent stage in both unbounded and bounded habitat domains. In unbounded habitat domain $\mathbb{R}$, we first prove the existence of the asymptotic spreading speed and then show that it coincides with the minimal wave speed for monotone periodic traveling waves. In a bounded habitat domain $\Omega\subset\mathbb{R}^N\ (N\geq1)$, we obtain the threshold result on the global attractivity of either the zero solution or the unique positive time-periodic solution of the system.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4414quiescent stagetime-periodicdelayspreading speedglobal attractivity
spellingShingle Shuang-Ming Wang
Liang Zhang
Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage
Electronic Journal of Qualitative Theory of Differential Equations
quiescent stage
time-periodic
delay
spreading speed
global attractivity
title Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage
title_full Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage
title_fullStr Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage
title_full_unstemmed Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage
title_short Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage
title_sort dynamics of a time periodic and delayed reaction diffusion model with a quiescent stage
topic quiescent stage
time-periodic
delay
spreading speed
global attractivity
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4414
work_keys_str_mv AT shuangmingwang dynamicsofatimeperiodicanddelayedreactiondiffusionmodelwithaquiescentstage
AT liangzhang dynamicsofatimeperiodicanddelayedreactiondiffusionmodelwithaquiescentstage