The Non-Linear Fokker–Planck Equation in Low-Regularity Space

We construct the global existence and exponential time decay rates of mild solutions to the non-linear Fokker–Planck equation near a global Maxwellians with small-amplitude initial data in the low regularity function space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML...

Full description

Bibliographic Details
Main Authors: Yingzhe Fan, Bo Tang
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/9/1576
_version_ 1797503797310783488
author Yingzhe Fan
Bo Tang
author_facet Yingzhe Fan
Bo Tang
author_sort Yingzhe Fan
collection DOAJ
description We construct the global existence and exponential time decay rates of mild solutions to the non-linear Fokker–Planck equation near a global Maxwellians with small-amplitude initial data in the low regularity function space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>L</mi><mi>k</mi><mn>1</mn></msubsup><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><msubsup><mi>L</mi><mi>v</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> where the regularity assumption on the initial data is weaker.
first_indexed 2024-03-10T03:55:28Z
format Article
id doaj.art-46dfe3918d774f94ba50a5fe1f9c374b
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:55:28Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-46dfe3918d774f94ba50a5fe1f9c374b2023-11-23T08:46:24ZengMDPI AGMathematics2227-73902022-05-01109157610.3390/math10091576The Non-Linear Fokker–Planck Equation in Low-Regularity SpaceYingzhe Fan0Bo Tang1School of Mathematics and Statistics, Nanyang Normal University, Nanyang 473061, ChinaSchool of Mathematics and Statistics, Hubei University of Arts and Science, Xiangyang 441053, ChinaWe construct the global existence and exponential time decay rates of mild solutions to the non-linear Fokker–Planck equation near a global Maxwellians with small-amplitude initial data in the low regularity function space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>L</mi><mi>k</mi><mn>1</mn></msubsup><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><msubsup><mi>L</mi><mi>v</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> where the regularity assumption on the initial data is weaker.https://www.mdpi.com/2227-7390/10/9/1576non-linear Fokker–Planck equationglobal existenceexponential time decay rateslow regularity function space
spellingShingle Yingzhe Fan
Bo Tang
The Non-Linear Fokker–Planck Equation in Low-Regularity Space
Mathematics
non-linear Fokker–Planck equation
global existence
exponential time decay rates
low regularity function space
title The Non-Linear Fokker–Planck Equation in Low-Regularity Space
title_full The Non-Linear Fokker–Planck Equation in Low-Regularity Space
title_fullStr The Non-Linear Fokker–Planck Equation in Low-Regularity Space
title_full_unstemmed The Non-Linear Fokker–Planck Equation in Low-Regularity Space
title_short The Non-Linear Fokker–Planck Equation in Low-Regularity Space
title_sort non linear fokker planck equation in low regularity space
topic non-linear Fokker–Planck equation
global existence
exponential time decay rates
low regularity function space
url https://www.mdpi.com/2227-7390/10/9/1576
work_keys_str_mv AT yingzhefan thenonlinearfokkerplanckequationinlowregularityspace
AT botang thenonlinearfokkerplanckequationinlowregularityspace
AT yingzhefan nonlinearfokkerplanckequationinlowregularityspace
AT botang nonlinearfokkerplanckequationinlowregularityspace