i4mC-GRU: Identifying DNA N4-Methylcytosine sites in mouse genomes using bidirectional gated recurrent unit and sequence-embedded features

N4-methylcytosine (4mC) is one of the most common DNA methylation modifications found in both prokaryotic and eukaryotic genomes. Since the 4mC has various essential biological roles, determining its location helps reveal unexplored physiological and pathological pathways. In this study, we propose...

Full description

Bibliographic Details
Main Authors: Thanh-Hoang Nguyen-Vo, Quang H. Trinh, Loc Nguyen, Phuong-Uyen Nguyen-Hoang, Susanto Rahardja, Binh P. Nguyen
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Computational and Structural Biotechnology Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037023001964
Description
Summary:N4-methylcytosine (4mC) is one of the most common DNA methylation modifications found in both prokaryotic and eukaryotic genomes. Since the 4mC has various essential biological roles, determining its location helps reveal unexplored physiological and pathological pathways. In this study, we propose an effective computational method called i4mC-GRU using a gated recurrent unit and duplet sequence-embedded features to predict potential 4mC sites in mouse (Mus musculus) genomes. To fairly assess the performance of the model, we compared our method with several state-of-the-art methods using two different benchmark datasets. Our results showed that i4mC-GRU achieved area under the receiver operating characteristic curve values of 0.97 and 0.89 and area under the precision-recall curve values of 0.98 and 0.90 on the first and second benchmark datasets, respectively. Briefly, our method outperformed existing methods in predicting 4mC sites in mouse genomes. Also, we deployed i4mC-GRU as an online web server, supporting users in genomics studies.
ISSN:2001-0370