Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculus
Abstract In this paper, we study generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p, q)$ -calculus. Many results obtained in this paper provide extensions of existing results in the literature. Furthermore, some examples are given to illustrat...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-06-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13660-021-02641-8 |
_version_ | 1818837144956829696 |
---|---|
author | Suriyakamol Thongjob Kamsing Nonlaopon Jessada Tariboon Sortiris K. Ntouyas |
author_facet | Suriyakamol Thongjob Kamsing Nonlaopon Jessada Tariboon Sortiris K. Ntouyas |
author_sort | Suriyakamol Thongjob |
collection | DOAJ |
description | Abstract In this paper, we study generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p, q)$ -calculus. Many results obtained in this paper provide extensions of existing results in the literature. Furthermore, some examples are given to illustrate the investigated results. |
first_indexed | 2024-12-19T03:17:50Z |
format | Article |
id | doaj.art-46e30ca0c7584bbfb1381c32647aaf20 |
institution | Directory Open Access Journal |
issn | 1029-242X |
language | English |
last_indexed | 2024-12-19T03:17:50Z |
publishDate | 2021-06-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of Inequalities and Applications |
spelling | doaj.art-46e30ca0c7584bbfb1381c32647aaf202022-12-21T20:37:51ZengSpringerOpenJournal of Inequalities and Applications1029-242X2021-06-012021111710.1186/s13660-021-02641-8Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculusSuriyakamol Thongjob0Kamsing Nonlaopon1Jessada Tariboon2Sortiris K. Ntouyas3Department of Mathematics, Khon Kaen UniversityDepartment of Mathematics, Khon Kaen UniversityDepartment of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North BangkokDepartment of Mathematics, University of IoanninaAbstract In this paper, we study generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p, q)$ -calculus. Many results obtained in this paper provide extensions of existing results in the literature. Furthermore, some examples are given to illustrate the investigated results.https://doi.org/10.1186/s13660-021-02641-8Hardy type integral inequalities( p , q ) $(p,q)$ -calculus( p , q ) $(p,q)$ -differentiable function( p , q ) $(p,q)$ -integrable function |
spellingShingle | Suriyakamol Thongjob Kamsing Nonlaopon Jessada Tariboon Sortiris K. Ntouyas Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculus Journal of Inequalities and Applications Hardy type integral inequalities ( p , q ) $(p,q)$ -calculus ( p , q ) $(p,q)$ -differentiable function ( p , q ) $(p,q)$ -integrable function |
title | Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculus |
title_full | Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculus |
title_fullStr | Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculus |
title_full_unstemmed | Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculus |
title_short | Generalizations of some integral inequalities related to Hardy type integral inequalities via ( p , q ) $(p,q)$ -calculus |
title_sort | generalizations of some integral inequalities related to hardy type integral inequalities via p q p q calculus |
topic | Hardy type integral inequalities ( p , q ) $(p,q)$ -calculus ( p , q ) $(p,q)$ -differentiable function ( p , q ) $(p,q)$ -integrable function |
url | https://doi.org/10.1186/s13660-021-02641-8 |
work_keys_str_mv | AT suriyakamolthongjob generalizationsofsomeintegralinequalitiesrelatedtohardytypeintegralinequalitiesviapqpqcalculus AT kamsingnonlaopon generalizationsofsomeintegralinequalitiesrelatedtohardytypeintegralinequalitiesviapqpqcalculus AT jessadatariboon generalizationsofsomeintegralinequalitiesrelatedtohardytypeintegralinequalitiesviapqpqcalculus AT sortiriskntouyas generalizationsofsomeintegralinequalitiesrelatedtohardytypeintegralinequalitiesviapqpqcalculus |