Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models

In this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well a...

Full description

Bibliographic Details
Main Authors: Plinio Andrade, Laura Rifo, Soledad Torres, Francisco Torres-Avilés
Format: Article
Language:English
Published: MDPI AG 2015-09-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/17/10/6576
_version_ 1798039850239131648
author Plinio Andrade
Laura Rifo
Soledad Torres
Francisco Torres-Avilés
author_facet Plinio Andrade
Laura Rifo
Soledad Torres
Francisco Torres-Avilés
author_sort Plinio Andrade
collection DOAJ
description In this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well as decreasing variability as time increases. Different values of the memory parameter influence the speed of this decrease, making this heteroscedastic model very flexible. Its properties are used to implement an approximate Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate our method through simulations and real data from the big earthquake that occurred in 2010 in Chile.
first_indexed 2024-04-11T21:59:22Z
format Article
id doaj.art-46fb226929ce48c997f221da536f44a4
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T21:59:22Z
publishDate 2015-09-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-46fb226929ce48c997f221da536f44a42022-12-22T04:01:00ZengMDPI AGEntropy1099-43002015-09-0117106576659710.3390/e17106576e17106576Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression ModelsPlinio Andrade0Laura Rifo1Soledad Torres2Francisco Torres-Avilés3Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão 1010,05508-090 São Paulo, BrazilInstitute of Mathematics and Statistics, University of Campinas, Rua Sérgio Buarque de Holanda 651, 13083-859 Campinas, BrazilCIMFAV—Facultad de Ingeniería, Universidad de Valparaíso, General Cruz 222, Valparaíso 2362905, ChileDepartamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Av.Libertador Bernardo O'Higgins 3363, Santiago 9170022, ChileIn this work, we propose a Bayesian methodology to make inferences for the memory parameter and other characteristics under non-standard assumptions for a class of stochastic processes. This class generalizes the Gamma-modulated process, with trajectories that exhibit long memory behavior, as well as decreasing variability as time increases. Different values of the memory parameter influence the speed of this decrease, making this heteroscedastic model very flexible. Its properties are used to implement an approximate Bayesian computation and MCMC scheme to obtain posterior estimates. We test and validate our method through simulations and real data from the big earthquake that occurred in 2010 in Chile.http://www.mdpi.com/1099-4300/17/10/6576Gamma-modulated processlong memoryBayesian inferenceapproximate Bayesian computationMCMC algorithme-value
spellingShingle Plinio Andrade
Laura Rifo
Soledad Torres
Francisco Torres-Avilés
Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
Entropy
Gamma-modulated process
long memory
Bayesian inference
approximate Bayesian computation
MCMC algorithm
e-value
title Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
title_full Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
title_fullStr Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
title_full_unstemmed Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
title_short Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models
title_sort bayesian inference on the memory parameter for gamma modulated regression models
topic Gamma-modulated process
long memory
Bayesian inference
approximate Bayesian computation
MCMC algorithm
e-value
url http://www.mdpi.com/1099-4300/17/10/6576
work_keys_str_mv AT plinioandrade bayesianinferenceonthememoryparameterforgammamodulatedregressionmodels
AT laurarifo bayesianinferenceonthememoryparameterforgammamodulatedregressionmodels
AT soledadtorres bayesianinferenceonthememoryparameterforgammamodulatedregressionmodels
AT franciscotorresaviles bayesianinferenceonthememoryparameterforgammamodulatedregressionmodels