Saprotrophic Fungus Induces Microscale Mineral Weathering to Source Potassium in a Carbon-Limited Environment

Plants rely on potassium for many critical biological processes, but most soils are potassium limited. Moving potassium from the inaccessible, mineral-bound pool to a more bioavailable form is crucial for sustainably increasing local potassium concentrations for plant growth and health. Here, we use...

Full description

Bibliographic Details
Main Authors: Jocelyn A. Richardson, Christopher R. Anderton, Arunima Bhattacharjee
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/13/5/641
Description
Summary:Plants rely on potassium for many critical biological processes, but most soils are potassium limited. Moving potassium from the inaccessible, mineral-bound pool to a more bioavailable form is crucial for sustainably increasing local potassium concentrations for plant growth and health. Here, we use a synthetic soil habitat (mineral doped micromodels) to study and directly visualize how the saprotrophic fungus, <i>Fusarium</i> sp. <i>DS 682</i>, weathers K-rich soil minerals. After 30 days of fungal growth, both montmorillonite and illite (secondary clays) had formed as surface coatings on primary K-feldspar, biotite, and kaolinite grains. The distribution of montmorillonite differed depending on the proximity to a carbon source, where montmorillonite was found to be associated with K-feldspar closer to the carbon (C) source, which the fungus was inoculated on, but associated with biotite at greater distances from the C source. The distribution of secondary clays is likely due to a change in the type of fungal exuded organic acids; from citric to tartaric acid dominated production with increasing distance from the C source. Thus, the main control on the ability of <i>Fusarium</i> sp. <i>DS 682</i> to weather K-feldspar is proximity to a C source to produce citric acid via the TCA cycle.
ISSN:2075-163X