The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in Rat
Background and Aim: Prolonged ischemia in organs with high metabolic rates such as brain and heart is associated with deleterious effects. Therefore, nutritive distribution through angiogenesis after ischemia is necessary for repairing damaged region of tissue. In this study, the effects of iron oxi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Arak Medical University
2018-06-01
|
Series: | Majallah-i dānishgāh-i ̒ulūm-i pizishkī-i Arāk |
Subjects: | |
Online Access: | http://jams.arakmu.ac.ir/article-1-5343-en.pdf |
_version_ | 1819203405088817152 |
---|---|
author | Mina Ghasemi Zeinab Khazaei Koohpar Mojtaba Falahati |
author_facet | Mina Ghasemi Zeinab Khazaei Koohpar Mojtaba Falahati |
author_sort | Mina Ghasemi |
collection | DOAJ |
description | Background and Aim: Prolonged ischemia in organs with high metabolic rates such as brain and heart is associated with deleterious effects. Therefore, nutritive distribution through angiogenesis after ischemia is necessary for repairing damaged region of tissue. In this study, the effects of iron oxide nanoparticles and magnetic field on angiogenesis after ischemia reperfusion (IR) in rat model have been investigated.
Materials and Methods: In this experimental study, fifty male rats aged between 6 -7 weeks at the 220-250gr weight were purchased from Tehran University. Animals were categorized in 5 groups including sham (ischemia reperfusion model), control, iron oxide nanoparticles-treated, magnetic field-exposed, and combination therapy with iron oxide nanoparticles and magnetic field-exposed groups. Angiogenesis was evaluated in hippocampus of 5 groups after 4 days by H&E staining method. The expression of Vegfa gene was studied in 5 groups by Q-RT- PCR.
Findings: Iron oxide nanoparticles as well as the magnetic field induced angiogenesis during 4 days in animals after IR (p<0.05), but their combination therapy did not show any significant difference compared to sham group during 4 days. Upregulation of Vegfa gene was observed in iron oxide nanoparticles treated group and the magnetic field exposed group significantly (p<0.05) relative to ischemia reperfusion (IR) model. But overexpression of Vegfa gene in combination therapy group was not significant relative to ischemia reperfusion (IR) group.
Conclusion: It seems that iron oxide nanoparticles and magnetic field can separately be two effective methods for angiogenesis after ischemia reperfusion (IR). |
first_indexed | 2024-12-23T04:19:23Z |
format | Article |
id | doaj.art-470bee0f20a349e5b12c9eebcf31d339 |
institution | Directory Open Access Journal |
issn | 1735-5338 2008-644X |
language | fas |
last_indexed | 2024-12-23T04:19:23Z |
publishDate | 2018-06-01 |
publisher | Arak Medical University |
record_format | Article |
series | Majallah-i dānishgāh-i ̒ulūm-i pizishkī-i Arāk |
spelling | doaj.art-470bee0f20a349e5b12c9eebcf31d3392022-12-21T18:00:17ZfasArak Medical UniversityMajallah-i dānishgāh-i ̒ulūm-i pizishkī-i Arāk1735-53382008-644X2018-06-012138393The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in RatMina Ghasemi0Zeinab Khazaei Koohpar1Mojtaba Falahati2Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.Department of Nanotechnology, Faculty of Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.Background and Aim: Prolonged ischemia in organs with high metabolic rates such as brain and heart is associated with deleterious effects. Therefore, nutritive distribution through angiogenesis after ischemia is necessary for repairing damaged region of tissue. In this study, the effects of iron oxide nanoparticles and magnetic field on angiogenesis after ischemia reperfusion (IR) in rat model have been investigated. Materials and Methods: In this experimental study, fifty male rats aged between 6 -7 weeks at the 220-250gr weight were purchased from Tehran University. Animals were categorized in 5 groups including sham (ischemia reperfusion model), control, iron oxide nanoparticles-treated, magnetic field-exposed, and combination therapy with iron oxide nanoparticles and magnetic field-exposed groups. Angiogenesis was evaluated in hippocampus of 5 groups after 4 days by H&E staining method. The expression of Vegfa gene was studied in 5 groups by Q-RT- PCR. Findings: Iron oxide nanoparticles as well as the magnetic field induced angiogenesis during 4 days in animals after IR (p<0.05), but their combination therapy did not show any significant difference compared to sham group during 4 days. Upregulation of Vegfa gene was observed in iron oxide nanoparticles treated group and the magnetic field exposed group significantly (p<0.05) relative to ischemia reperfusion (IR) model. But overexpression of Vegfa gene in combination therapy group was not significant relative to ischemia reperfusion (IR) group. Conclusion: It seems that iron oxide nanoparticles and magnetic field can separately be two effective methods for angiogenesis after ischemia reperfusion (IR).http://jams.arakmu.ac.ir/article-1-5343-en.pdfIron oxide nanoparticlesIschemia reperfusion (IR)Magnetic fieldQ-RT-PCRVegfa. |
spellingShingle | Mina Ghasemi Zeinab Khazaei Koohpar Mojtaba Falahati The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in Rat Majallah-i dānishgāh-i ̒ulūm-i pizishkī-i Arāk Iron oxide nanoparticles Ischemia reperfusion (IR) Magnetic field Q-RT-PCR Vegfa. |
title | The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in Rat |
title_full | The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in Rat |
title_fullStr | The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in Rat |
title_full_unstemmed | The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in Rat |
title_short | The Effect of Iron Oxide Nanoparticles and Magnetic Field on Angiogenesis and Deregulation of Vegfa Gene After Ischemia Reperfusion in Rat |
title_sort | effect of iron oxide nanoparticles and magnetic field on angiogenesis and deregulation of vegfa gene after ischemia reperfusion in rat |
topic | Iron oxide nanoparticles Ischemia reperfusion (IR) Magnetic field Q-RT-PCR Vegfa. |
url | http://jams.arakmu.ac.ir/article-1-5343-en.pdf |
work_keys_str_mv | AT minaghasemi theeffectofironoxidenanoparticlesandmagneticfieldonangiogenesisandderegulationofvegfageneafterischemiareperfusioninrat AT zeinabkhazaeikoohpar theeffectofironoxidenanoparticlesandmagneticfieldonangiogenesisandderegulationofvegfageneafterischemiareperfusioninrat AT mojtabafalahati theeffectofironoxidenanoparticlesandmagneticfieldonangiogenesisandderegulationofvegfageneafterischemiareperfusioninrat AT minaghasemi effectofironoxidenanoparticlesandmagneticfieldonangiogenesisandderegulationofvegfageneafterischemiareperfusioninrat AT zeinabkhazaeikoohpar effectofironoxidenanoparticlesandmagneticfieldonangiogenesisandderegulationofvegfageneafterischemiareperfusioninrat AT mojtabafalahati effectofironoxidenanoparticlesandmagneticfieldonangiogenesisandderegulationofvegfageneafterischemiareperfusioninrat |