Casting behavior of the string structures considering axial elongation

A flexible string is used at various places. Typical examples are a cable for power transmission and communication and a wire for cranes and elevators. In addition, there are the uses such as a fly-fishing line, climbing rope and a mowing machine to cut turf by turning a nylon string. In the past st...

Full description

Bibliographic Details
Main Authors: Yusuke SAWADA, Tetsuya WATANABE
Format: Article
Language:Japanese
Published: The Japan Society of Mechanical Engineers 2019-04-01
Series:Nihon Kikai Gakkai ronbunshu
Subjects:
Online Access:https://www.jstage.jst.go.jp/article/transjsme/85/872/85_19-00008/_pdf/-char/en
Description
Summary:A flexible string is used at various places. Typical examples are a cable for power transmission and communication and a wire for cranes and elevators. In addition, there are the uses such as a fly-fishing line, climbing rope and a mowing machine to cut turf by turning a nylon string. In the past study, a string pendulum was paid attention as the basic motion of the string. An analysis model of the string pendulum was made and appropriateness of the modeling and the behavior of the string pendulum were clarified. However, axial elongation is not considered. In fact, the axial elongation affects their behavior such as axial micro vibration or restoring force of the elongation. Therefore, it is necessary to consider the axial elongation to grasp the behavior of the string more exactly. In this study, an accelerated motion of the string such as the casting motion is focused on and analyzed in consideration the axial elongation then appropriateness of the modeling is verified by comparing experimental results and analysis results. Furthermore, relations of the axial elongation and an accelerated motion are investigated. In this paper, the behavior is investigated focusing on the velocity of the tip of the string. As a result, strain energy is stored and then converted into kinetic energy, thereby increasing the velocity.
ISSN:2187-9761