Synthesis and characterization of iron oxide-commercial activated carbon nanocomposite for removal of hexavalent chromium (Cr6+) ions and Mordant Violet 40 (MV40) dye

Abstract Iron Oxide-commercial activated carbon nanocomposite (CAC-IO) was prepared from commercial activated carbon (CAC) by the co-precipitation method, and the resulting nanocomposite was used as an adsorbent to remove hexavalent chromium (Cr6+) ions and Mordant Violet 40 (MV40) dye from wastewat...

Full description

Bibliographic Details
Main Authors: Soha Mahrous Ismail Mohamed, Murat Yılmaz, Eda Keleş Güner, Ahmed El Nemr
Format: Article
Language:English
Published: Nature Portfolio 2024-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-024-51587-6
Description
Summary:Abstract Iron Oxide-commercial activated carbon nanocomposite (CAC-IO) was prepared from commercial activated carbon (CAC) by the co-precipitation method, and the resulting nanocomposite was used as an adsorbent to remove hexavalent chromium (Cr6+) ions and Mordant Violet 40 (MV40) dye from wastewater. The produced materials (CAC, CAC after oxidation, and CAC-IO) were comparatively characterized using FTIR, BET, SEM, EDX TEM, VSM, and XRD techniques. The adsorption mechanism of Cr6+ ions and MV40 dye on CAC-IO was examined using Langmuir and Freundlich isotherm models.. Different models were applied to know the adsorption mechanism and it was obtained that Pseudo-second order fits the experimental data better. This means that the adsorption of the adsorbate on the nanocomposite was chemisorption. The maximum removal percent of Cr6+ ions by CAC-IO nanocomposite was 98.6% determined as 2 g L–1 adsorbent concentration, 100 mg L–1 initial pollutant concentration, solution pH = 1.6, the contact time was 3 h and the temperature was room temperature. The maximum removal percentage of Mordant Violet 40 dye (C.I. 14,745) from its solutions by CAC-IO nanocomposite was 99.92% in 100 mg L–1 of initial dye concentrations, 1.0 g L–1 of adsorbent concentration, solution pH = 2.07, the contact time was 3 h. The MV40 dye adsorption on CAC-IO was the most fitted to the Freundlich isotherm model. The maximum adsorption capacity was calculated according to the Langmuir model as 833.3 mg g–1 at 2 g L–1 of adsorbent concentration and 400 mg L–1 of initial MV40 dye concentration. The Cr6+ ions adsorption on CAC-IO was more fitted to the Freundlich model with Q max , equal to 312.50 mg g–1 at 1 g L–1 adsorbent concentration and 400 mg L–1 of Cr6+ ions initial concentrations.
ISSN:2045-2322